Conformal Prediction and MLLM aided Uncertainty Quantification in Scene Graph Generation

POSTER #99

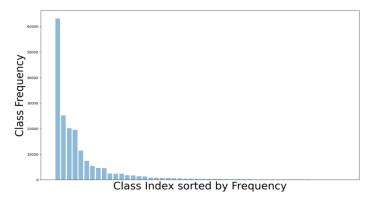
Sayak Nag

Udita Ghosh

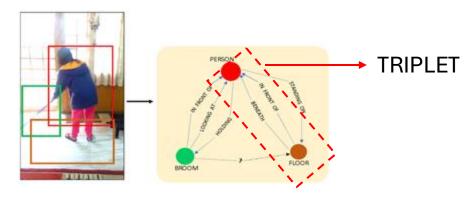
Calvin-Khang Ta

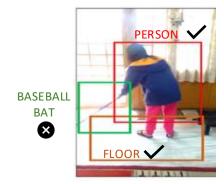
Sarosij Bose

Jiachen Li



Amit K. Roy-Chowdhury




MOTIVATION

Long-tail distribution of Relationships/Predicates

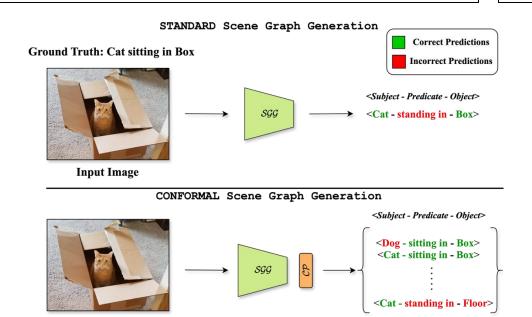
Imprecise or missing scene descriptions

Object detection failure

- Results in generation of noisy scene graphs
- Necessary to quantify the uncertainty of SGG methods in a post-hoc manner with statistical guarantees.

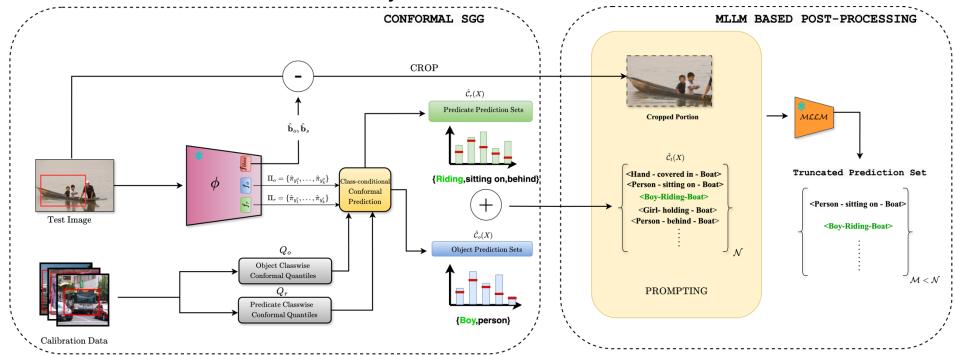
CONFORMAL PREDICTION

OVERVIEW


- ightharpoonup Given dataset $\mathcal{D}=\{\mathcal{D}_{tr},\mathcal{D}_{cal},\mathcal{D}_{test}\}$
- ightharpoonup Under the assumption of of exchangeability $\mathcal{D}_{cal}\cup (X_{n+1},Y_{n+1})$, \square $P(Y_{n+1}\in \hat{\mathcal{C}}(X_{n+1}))\geq 1-lpha$

Input Image

- Class-conditional conformal prediction,
 - $\square P(Y_{n+1} \in \hat{\mathcal{C}}(X_{n+1}) \mid Y_{n+1} = y) \ge 1 \alpha_y \quad \forall y \in \mathcal{Y}$


CONFORMAL CALIBRATION

- \triangleright Design a nonconformity measure A()
- \succ Compute class-wise non-conformity scores for samples in \mathcal{D}_{cal}
- Sort class-wise non-conformity scores to obtain $1 \alpha_y$ th quantile.

FRAMEWORK

Plausibility ensured Conformal SGG or PC-SGG

$$\mathcal{A}: \mathcal{X} \times \mathcal{Y} \to [0,1], (\hat{f}(X), y) \mapsto 1 - \hat{\pi}_y(X)$$

Non-conformity measure

$$\hat{\mathcal{C}}_{o}(X_{n+1}^{o}) = \{ y_{k}^{o} \in \mathcal{Y}_{o} : \hat{\pi}_{y_{k}^{o}} \ge 1 - \hat{q}_{y_{k}^{o}} \}$$

$$\hat{\mathcal{C}}_{r}(X_{n+1}^{r}) = \{ y_{k}^{r} \in \mathcal{Y}_{r} : \hat{\pi}_{y_{k}^{r}} \ge 1 - \hat{q}_{y_{k}^{r}} \}$$

Object and Predicate Conformal Sets

$$\hat{q}_{y_i^o} = \left[(n_{y_i^o} + 1)(1 - \alpha_o) / n_{y_i^o} \right]$$

$$\hat{q}_{y_i^r} = \left[(n_{y_i^r} + 1)(1 - \alpha_r) / n_{y_i^r} \right]$$

Class-wise calibrated quantile scores

MLLM BASED POST-PROCESSING

System Prompt

You are an AI assistant designed to evaluate the plausibility of visual scene graphs in a given image.

For each image, assess multiple-choice statements that describe possible relationships in the scene.

Respond only with 'OK' if you understand these instructions.

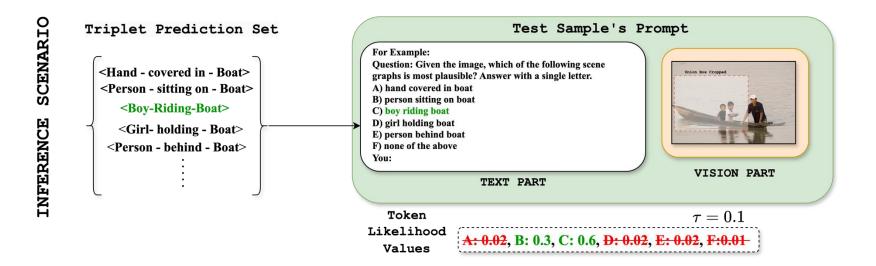
TEXT PART

Example Prompt

For Example:

Question: Given the image, which of the following scene graphs is most plausible? Answer with a single letter.

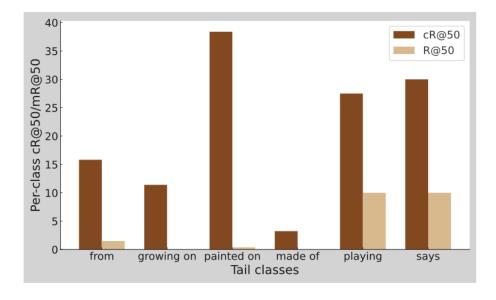
- A) dog jumping over car
- B) dog standing on car
- C) dog inside house
- D) cat standing on car
- E) dog flying in sky
 F) none of the above
- You: B


Response with 'I Understand' if you understand the example and instructions.

VISION PART

TEXT PART

- Leverages one shot in context learning in a MCQA setup.
- Compresses prediction sets into most plausible ones.
- ➤ MLLM: BLIP2-Flan-T5-XL

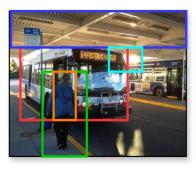

CONFORMAL SGG COVERAGE GUAURANTEE

Theorem 1. Given the ground truth class of the k^{th} triplet is denoted as $y_k^t = [y_k^s, y_k^r, y_k^o] \in \mathbb{R}^3$ where $y_k^s, y_k^o \in \mathcal{Y}_o$ and $y_k^r \in \mathcal{Y}_r$, the triplet coverage guarantee is given as $P(y_k^t \in \hat{\mathcal{C}}_t(X_{n+1}^r)) = P(Y_{n+1}^o \in \hat{\mathcal{C}}_o(X_{n+1}^o) \mid Y_{n+1}^o = y_i^o) \cdot P(Y_{n+1}^r \in \hat{\mathcal{C}}_o(X_{n+1}^r) \mid Y_{n+1}^r = y_m^r) \ \forall \ y_k^s \in \mathcal{Y}_o, y_k^o \in \mathcal{Y}_o, y_k^r \in \mathcal{Y}_r.$

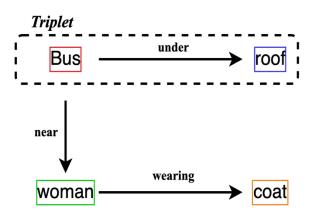
Corollary 1. Following Theorem 1, $P(y_k^t \in \hat{\mathcal{C}}_t(X_{n+1}^r)) \ge (1 - \alpha_o)(1 - \alpha_r), \ \forall \ y_k^s \in \mathcal{Y}_o, y_k^o \in \mathcal{Y}_o, y_k^r \in \mathcal{Y}_r.$

RESULTS

Method	Objects			Predicates			Triplets
TVICTION.	$\overline{Cov\uparrow}$	$CovGap\downarrow$	$AvgSize \downarrow$	$\overline{Cov\uparrow}$	$CovGap \downarrow$	$AvgSize \downarrow$	$\overline{Cov_T\uparrow}$
MOTIFS [57]	88.94	5.8	4.87	84.11	6.2	16.09	74.97
MOTIFS-D [11]	88.94	5.8	4.87	86.67	5.9	16.81	76.67
VCTREE [44]	89.38	5.7	4.23	88.61	5.9	16.41	80.06
SQUAT [20]	90.26	4.9	4.48	90.25	4.6	14.48	80.25
BGNN [26]	90.35	4.8	4.48	89.68	5.2	16.23	80.45

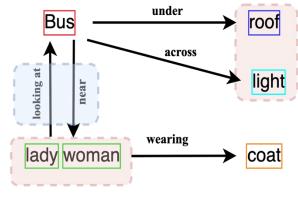

Method	w/o MLLM	Plausibility Assessment	w/ MLLM Plausibility Assessment		
11201104	$\overline{Cov_T \uparrow}$	$AvgSize \downarrow$	$\overline{Cov_T \uparrow}$	$AvgSize \downarrow$	
MOTIFS [57]	74.97	866.09	74.97	403.21	
MOTIFS-D [11]	76.93	893.21	76.67	411.58	
VCTREE [44]	80.06	818.76	80.06	389.24	
SQUAT [20]	80.43	816.68	80.25	398.67	
BGNN [26]	80.45	971.69	80.45	464.11	

$$lpha_o=0.05$$
 , $lpha_r=0.1$

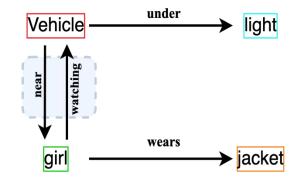

Method	R@50	R@100	mR@50	mR@100
MOTIFS [57]	23.61	29.08	4.52	6.22
MOTIFS-D [11]	24.33	30.12	5.26	7.06
VCTREE [44]	26.77	31.46	5.73	7.14
SQUAT [20]	26.81	32.06	9.95	12.05
BGNN [26]	30.07	34.90	9.63	11.92

Method+PC-SGG	cR@50	cR@100	cmR@50	cmR@100
MOTIFS [57]	38.45	46.79	25.49	34.03
MOTIFS-D [11]	40.21	47.46	26.17	35.63
VCTREE [44]	41.89	49.90	27.84	36.75
SQUAT [20]	43.23	51.87	30.94	39.23
BGNN [26]	46.32	53.81	32.52	40.36

RESULTS



(a) Input Image



(b) Ground Truth

(b) Plausible Scene Graph 1

(c) Plausible Scene Graph 2

: Object Prediction Set

: Predicate Prediction Set

Poster Session: June 14, Exhall D Poster ID: 99

