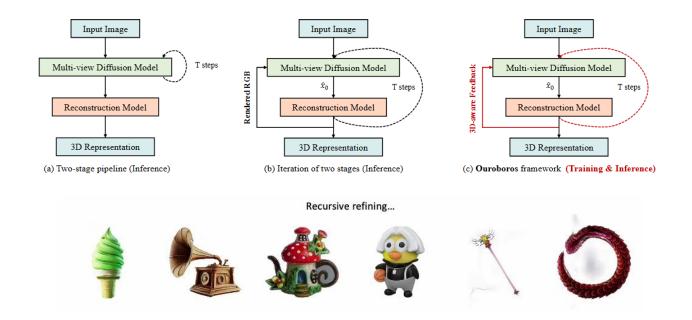
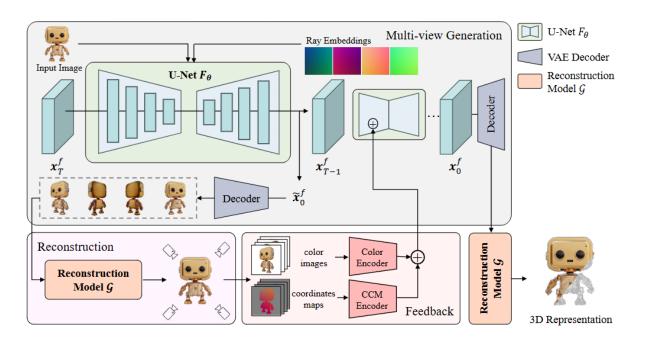
Ouroboros3D: Image-to-3D Generation via 3D-aware Recursive Diffusion


Hao Wen¹*, Zehuan Huang¹,³*, Yaohui Wang², Xinyuan Chen², Lu Sheng1 □ ¹Beihang University ²Shanghai Al Laboratory ³VAST

https://costwen.github.io/Ouroboros3D/

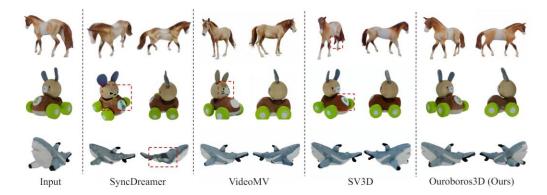

Motivation

The motivation for the Ouroboros3D framework arises from separately generation and reconstruction model training. Ouroboros3D integrates multi-view generation and 3D reconstruction into a recursive diffusion process.

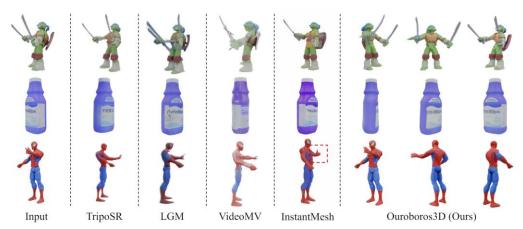
Pipeline: Multi-view Diffusion Model

We introduce a self-conditioning mechanism, feeding the 3D-aware information obtained from the reconstruction module back to the multi-viewgeneration process. The 3D-aware recursive diffusion strategy iteratively refines the multi-view images and the 3d model.

Key Idea: 3D aware self condition feedback


Training+ Inference pseudocode

```
Algorithm 1 Training
Input: x, cond_image, cameras, timestep
Output: loss
// Returns the loss on a training example x. Details about
 EDM are omitted here.
begin
    noise ← Sample from Normal Distribution
    noisy_x \leftarrow Add_Noise(x, noise, timestep)
    pred_x \leftarrow F(noisy_x, cond_image, timestep, cameras)
    pred_i \leftarrow VAE\_Decoder(pred_x)
    self cond \leftarrow \mathcal{G}(\text{pred i, cameras, timestep})
    if Random Uniform(0, 1) > 0.5 then
        pred_x \leftarrow F(noisy_x, cond_image, timestep, cam-
         eras, self cond)
    end
    loss_mv \leftarrow MSE_Loss(pred_x, x)
    loss recon ←
                         MSE_Loss(self_cond,
     LPIPS Loss(self cond, x)
    loss \leftarrow loss\_mv + loss\_recon
    return loss
end
```

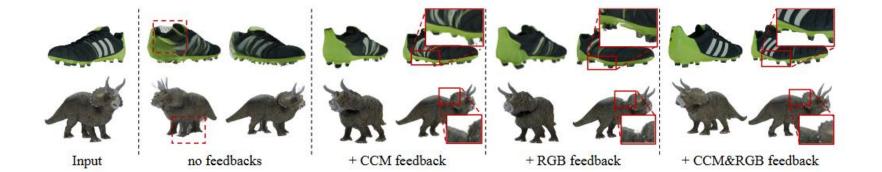

```
Algorithm 2 Inference
Input: cond_image, cameras, timesteps
Output: images, 3d_model
// Generate multi-view images and 3D model from a condi-
 tion image.
begin
    self cond \leftarrow None
    x_t \leftarrow Sample from Normal Distribution
    foreach timestep in timesteps do
        pred_x \leftarrow F(x_t, cond_image, timestep, cameras,
         self cond)
        pred_i \leftarrow VAE_p Decoder(pred_x)
        self\_cond \leftarrow \mathcal{G}(pred\_i, cameras, timestep)
    end
    return pred_i, self_cond
end
```

Comparison Results

Qualitative comparisons of generated multi-view images

Qualitative comparisons for image-to-3D

	Method	Resolution	PSNR↑	SSIM↑	LPIPS↓
	SyncDreamer [9]	256×256	20.056	0.8163	0.1596
Image-to-Multiview	SV3D [13]	576×576	21.042	0.8497	0.1296
	VideoMV [23]	256×256	18.605	0.8410	0.1548
	Ouroboros3D (SVD)	512×512	21.770	0.8866	0.1093
Image-to-3D	TripoSR [53]	256×256	18.481	0.8506	0.1357
	LGM [16]	512×512	17.716	0.8319	0.1894
	VideoMV(GS) [23]	256×256	18.764	0.8449	0.1569
	InstantMesh (NeRF) [19]	512×512	19.948	0.8727	0.1205
	Ouroboros3D (LGM)	512×512	21.761	0.8894	0.1091


Table: Quantitative comparison on the quality of generated multiview images and 3D representation for image-to-multiview and image-to-3D tasks.

GSO Results

Ablation

Qualitative comparison with no-feedback and 3d-aware feedback

Joint Training	CCM Feedback	RGB Feedback	PSNR↑	SSIM↑	LPIPS↓	$\Delta PSNR\downarrow$	$\Delta SSIM \downarrow$	Δ LPIPS \downarrow
×	×	×	20.012	0.8465	0.1287	1.067	0.0125	0.0189
✓	×	×	20.549	0.8651	0.1183	0.511	0.0094	0.0070
✓	✓	×	21.325	0.8937	0.1092	0.304	0.0036	0.0018
✓	×	✓	21.542	0.8871	0.1103	0.100	0.0101	0.0036
✓	✓	✓	21.761	0.9094	0.0991	0.009	0.0028	0.0002

More Results

