

LC-Mamba: Local and Continuous Mamba with Shifted Windows for Frame Interpolation

CVPR JUNE 11-15, 2025

Github

Min Wu Jeong, Chae Eun Rhee Hanyang University

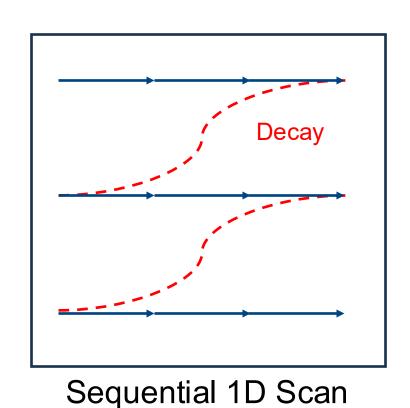
Introduction

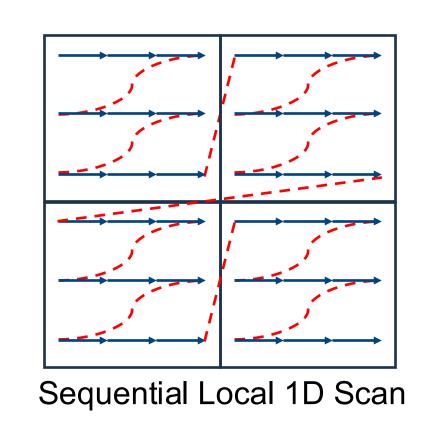
Summary of Our Work

2D Hilbert Curve-based Selective State Scan

- •Maintains Spatial Correlation: Preserves spatial relationships within and between windows.
- •Preserves Spatial Continuity: Prevents distortion of spatial information during scanning.

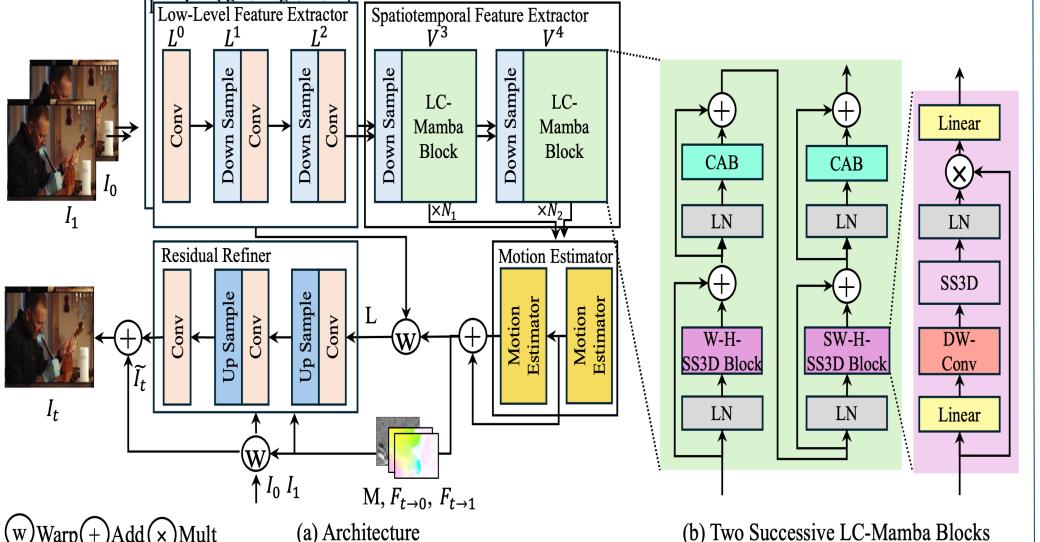
Hierarchical Shifted Window


- •8x8 Restricted Scan Area: Enables fine-grained observation of local spatial characteristics in high-resolution frames.
- •Reduced Information Decay: Minimizes loss of historical information.
- •Multi-Scale Motion Capture: Effectively captures complex motion between frames.


Temporal Scan

- Leverages Interleaved Selective State Scan: 2D Hilbert curvebased.
- •Simultaneous Spatiotemporal Modeling: Enables integrated analysis of temporal and spatial relationships between two frames

Limitations of Previous Methods


- •CNN: Difficulty in accurately capturing complex and large movements due to a small receptive field.
- ViT: Advantageous for modeling long-range dependencies, but incurs high computational costs for high-resolution and real-time processing due to the quadratic complexity of self-attention.
- •Mamba: Suitable for high-resolution processing with linear computational complexity, but suffers from loss of spatial characteristics and weakened information transfer between tokens (information decay) during the 1D sequential scanning of 2D images, limiting local pixel relationship modeling.


Proposed Method

Overall Architecture of LC-Mamba

2D Hilbert Curve-based Selective State Scan

Preserves pixel-level spatial adjacency using Hilbert curves for 2D-to-1D conversion. Its four-path Hilbert structure enhances information transfer efficiency and compensates for loss/decay via alternative paths.

Hierarchical Shifted Window

Simultaneously secures locality and global connectivity through shifted windows and Δ (Delta) gating, precisely controlling information flow to effectively model spatial information.

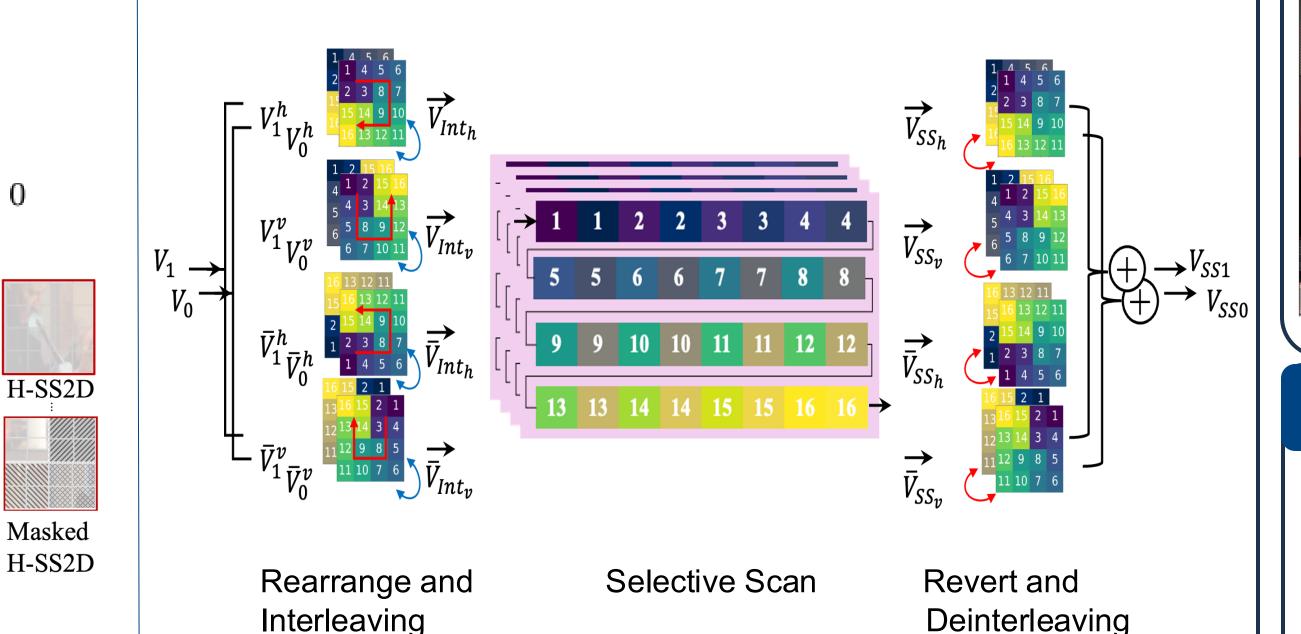
$$h(t) = \bar{A}h(t-1) + \bar{B}x(t)$$

$$\bar{A} = e^{\Delta A}$$

$$\bar{B} = (\Delta A)^{-1}(e^{\Delta A} - I)\Delta B \approx \Delta B.$$

$$h(t) = \bar{A}h(t-1) \quad \bar{A} = 1, \bar{B} = 0 \quad \text{if } \Delta = 0$$
 Layer 1 Layer 1+1

Window partition


Local

Window

Cycle Shift

Temporal Scan

Effectively captures complex **spatiotemporal correlations** between frames through sophisticated **spatiotemporal relationship modeling** based on **interleaved H-SS2D scanning**.

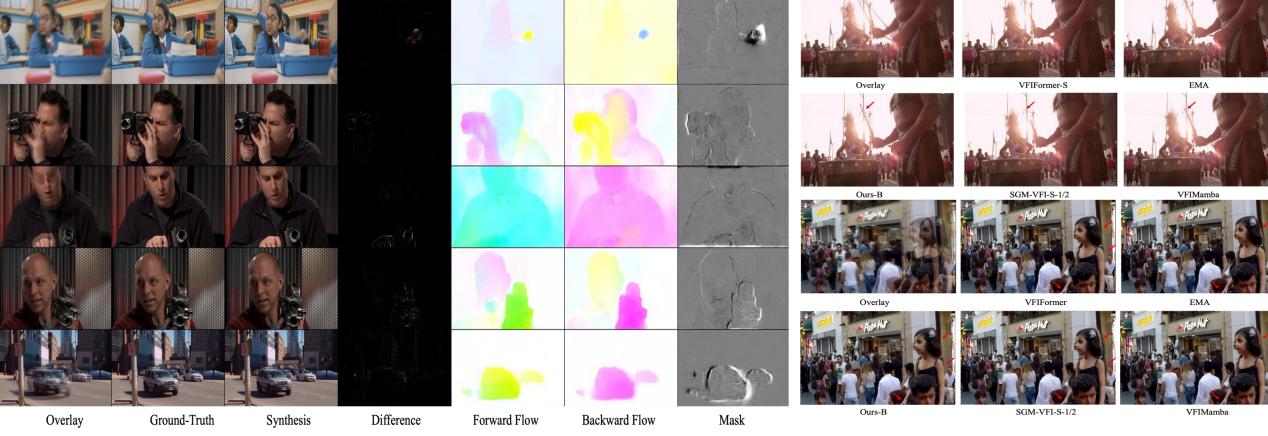
Experiments

Quantitative Result

Table 8. Additional quantitative comparison across benchmarks (IE for Middlebury; PSNR/SSIM for Vimeo90K, UCF101, Xiph, and SNU-FILM). The best and second-best results are highlighted in **bold** and <u>underlined</u>, respectively. "Out of Memory" is denoted as "OOM," and "†" indicates our own test results; other results are cited from [11, 14, 15, 26, 35, 46]. Evaluation procedures followed those of [14] for Vimeo90K, UCF101, and Middlebury, [30] for Xiph, and [15] for SNU-FILM, with Test-Time Augmentation (TTA) disabled.

Method	Vimeo90K	UCF101	Xi	iph	- M.B.		SNU-	FILM		Params (M)	Flore (T)
Method	VIIIICOSOK	2K 4K Easy Medium Hard Extreme	Flops (T)								
ToFlow [1]	33.73/0.9682	34.58/0.9667	33.93/0.922	30.74/0.856	2.15	39.08/0.9890	34.39/0.9740	28.44/0.9180	23.39/0.8310	1.4	0.62
IFRNet [15]	35.80/0.9794	35.29/0.9693	36.00/0.936	33.99/0.893	1.95	40.03/0.9905	35.94/0.9793	30.41/0.9358	25.05/0.8587	5	0.21
M2M [11]	35.47/0.9778	35.28/0.9694	36.44/0.943	33.92/0.899	2.09	39.66/0.9904	35.74/0.9794	30.30/0.9360	25.08/0.8604	7.6	0.26
SoftSplat [30]	36.10/0.9802	35.39/0.9697	36.62/0.944	33.60/0.901	1.81	39.88/0.9897	35.68/0.9772	30.19/0.9312	24.83/0.8500	7.7	0.94
RIFE [14]	35.61/0.9779	35.28/0.969	36.19/0.938	33.76/0.894	1.96	39.80/0.9903	35.76/0.9787	30.36/0.9351	25.27/0.8601	9.8	0.20
BMBC [31]	35.01/0.9764	35.15/0.9689	32.82/0.928	31.19/0.880	2.04	39.90/0.9902	35.31/0.9774	29.33/0.9270	23.92/0.8432	11.1	2.50
EMA-S [46]	36.07/0.9794†	35.34/0.9696†	36.54/0.942†	34.24/0.902†	1.94†	39.81/0.9903†	35.88/0.9792†	30.68/0.9371†	25.47/0.8627†	14.5	0.39
VFIMamba-S [47]	36.09/0.9800†	35.35/0.9696†	36.71/0.942†	34.26/0.902†	1.97†	40.21/0.9912†	36.17/0.9802†	30.80/0.9382†	25.59/0.8655†	16.8	0.39
ABME [32]	36.18/0.9805	35.38/0.9698	36.53/0.944	33.73/0.901	2.01	39.59/0.9901	35.77/0.9789	30.58/0.9364	25.42/0.8639	18.1	1.30
SGM-VFI-S-1/2 [19]	35.81/0.9785†	35.33/0.9692†	36.06/0.940†	33.26/0.897†	1.87†	40.36/0.9900†	36.12/0.9787†	30.62/0.9351†	25.38/0.8615†	20.8	1.96
SepConv [5]	33.79/0.9702	34.78/0.9669	34.77/0.929	32.06/0.880	2.27	39.41/0.9900	34.97/0.9762	29.36/0.9253	24.31/0.8448	21.7	0.38
AdaCoF [16]	34.47/0.9730	34.90/0.9680	34.86/0.928	31.68/0.870	2.24	39.80/0.9900	35.05/0.9754	29.46/0.9244	24.31/0.8439	21.8	0.36
DAIN [2]	34.71/0.9756	34.99/0.9683	35.95/0.940	33.49/0.895	2.04	39.73/0.9902	35.46/0.9780	30.17/0.9335	25.09/0.8584	24.0	5.51
VFIFormer [26]	36.50/ 0.9815 †	35.42/0.9699†	OOM†	OOM†	1.82†	40.12/0.9907†	36.09/0.9798†	30.67/0.9378†	25.43/0.8643†	24.1	47.41
CAIN [6]	34.65/0.9730	34.91/0.9690	35.21/0.937	32.56/0.901	2.28	39.89/0.9900	35.61/0.9776	29.90/0.9292	24.78/0.8507	42.8	1.29
EMA [46]	36.50/ <u>0.9814</u> †	35.38/0.9697†	36.74/0.944†	34.54/0.905†	1.84†	39.57/0.9905†	35.85/0.9797†	30.80/0.9389†	25.59/0.8650†	65.6	1.64
VFIMamba [47]	36.45/0.9807†	35.37/0.9699†	37.02/0.944†	34.39/0.904†	1.89†	40.41/0.9903†	36.30 /0.9794†	30.89/0.9387†	25.68/0.8661†	66.1	1.54
Ours-C	36.10/0.9801	35.38/0.9700	37.12/ <u>0.946</u>	34.81/0.908	1.94	40.10/ 0.9915	36.11/ <u>0.9809</u>	30.81/0.9405	25.69/0.8710	4.3	0.27
Ours-E	36.20/0.9802	35.42/0.9699	37.17/0.946	34.99/0.910	1.96	40.15/0.9912	36.18/0.9809	30.89/0.9416	25.81/ 0.8725	6.7	0.29
Ours-B	36.52 /0.9810	35.47/0.9703	37.33/0.947	35.14/0.911	1.90	40.20/0.9909	36.30/0.9810	31.00/0.9417	25.83 / <u>0.8722</u>	16.2	1.07

Ablation Study


Table 3. Performance comparison of different scanning methods

Scanning	Vimeo90K	Xiph-2K	Xiph-4K	SNU-FILM(avg.)	
Bidirection w/ ILV	35.41/0.9799	36.00/0.9381	33.13/0.8937	32.32/0.9405	
Cross w/ ILV	36.07/0.9799	35.73/0.9362	33.80/0.8947	32.53/0.9413	
Continuous w/ ILV	36.09/0.9800	36.57/0.9428	33.99/0.9010	24.59/0.8335	
Local w/ ILV	36.11/0.9801	36.38/0.9415	34.01/0.9008	32.62/0.9411	
Z-order w/ ILV	36.13/0.9800	35.91/0.9371	33.30/0.8932	32.36/0.9417	

Table 4. Ablation studies for window settings. The "Settings" column shows window size and whether shifting is used, while the other columns display performance (PSNR/SSIM).

Settings	Vimeo90K	Xiph-2K	Xiph-4K	SNU-FILM(avg.)
8 w/ shift	36.43/0.9813	36.90 /0.9452	34.26 /0.9046	33.02/0.9429
8 w/o shift	36.45/0.9813	36.78/0.9448	34.15/0.9042	32.95/0.9428
16 w/ shift	36.44/0.9813	36.88/ 0.9454	34.15/ 0.9047	33.02/0.9429
16 w/o shift	36.46/0.9813	36.88/0.9449	34.23/0.9045	33.05/0.9429

Qualitative Result

Conclusion

- Enhanced Mamba for VFI: Hilbert curves & shift-window scanning improve spatial continuity and balance local/global information.
- Achieves higher efficiency in low/high-resolution settings and effectively captures diverse motion patterns.