

湖畔实验室

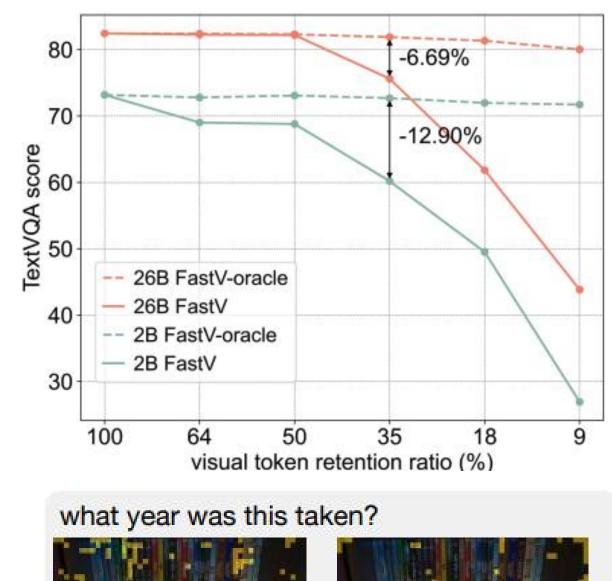
A Stitch in Time Saves Nine:

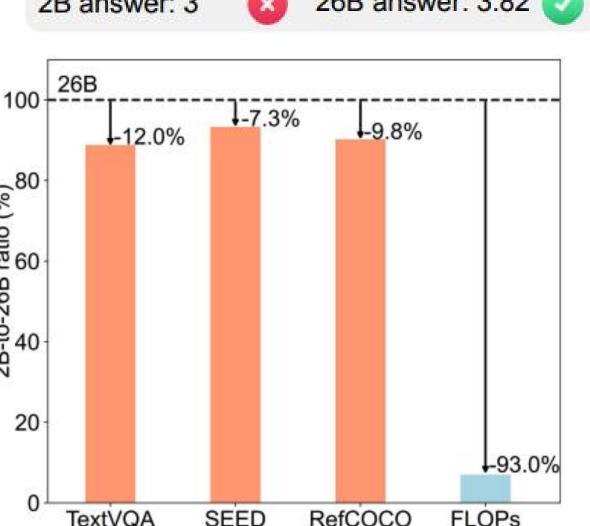
Small VLM is a Precise Guidance for Accelerating Large VLMs

Wangbo Zhao^{1*} Yizeng Han^{2*} Jiasheng Tang^{2,3} Zhikai Li¹ Yibing Song^{2,3} Kai Wang^{1†} Zhangyang Wang⁴ Yang You¹ ¹National University of Singapore ²DAMO Academy, Alibaba Group ³Hupan Lab ⁴The University of Texas at Austin

Motivation

- A single-layer attention map is suboptimal compared to the global attention maps aggregated from all layers
- Global attention information, such as the attention map aggregated across all layers, more effectively preserves essential tokens
- The global attention map aggregated from a small VLM closely resembles that of a large VLM, suggesting an efficient alternative.
- The performance gap between small and large VLM is minimal compared to their computation disparity.

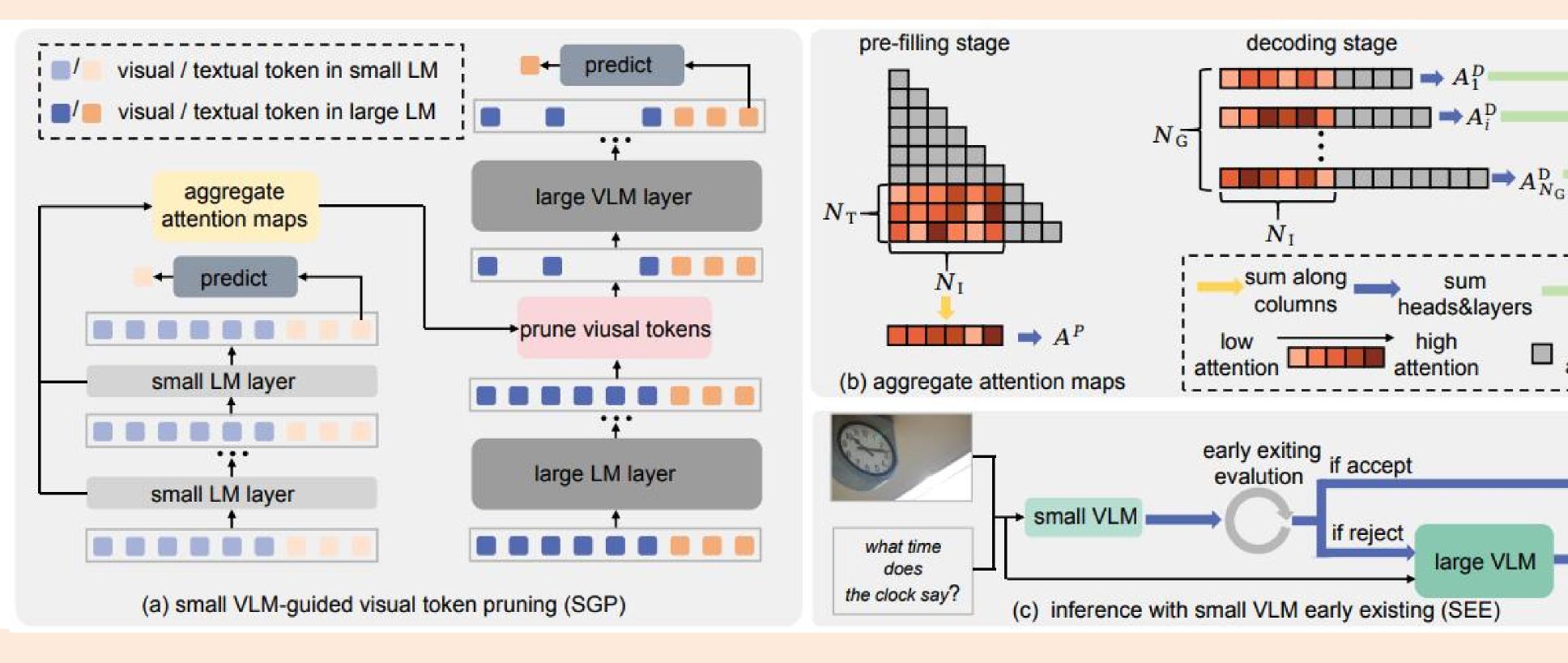




(a) Small VLM-guided visual token pruning in a large VLM (SGP)

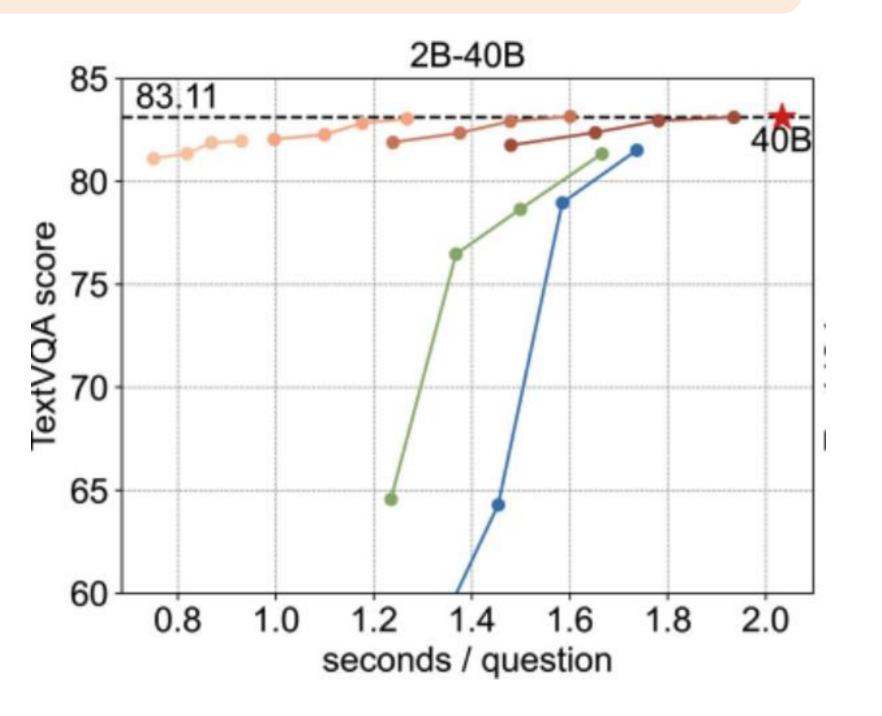
- .(b) Aggregation of attention maps in SGP
- (c) Inference with Small VLM Early Exiting (SEE)

Methodlogy



Experiment

method	token	visual question answering				comprehensive benchmark				visual grounding			score
	ratio	TextVQA	ChartQA	DocVQA	GQA	SEED	MMBench	MM-Vet	MME	RC	RC+	RC-g	ratio
InternVL2-26B [7]	100%	82.45	84.92	92.14	64.89	76.78	83.46	64.00	2270	91.24	86.67	88.44	100.00%
InternVL2-2B [7]	100%	73.19	76.24	85.93	61.16	71.62	72.93	43.30	1878	82.26	73.53	77.55	87.25%
26B w/ ToMe [2]	64%	80.22	76.24	79.51	64.49	75.60	82.74	60.10	2235	84.02	78.91	80.35	94.24%
	35%	75.74	62.44	66.79	63.61	73.84	81.28	52.50	2178	71.08	64.97	68.08	85.20%
	9%	51.69	28.60	28.46	57.52	65.19	73.09	37.70	1933	20.33	17.74	19.36	54.28%
26B w/ FastV [5]	64%	82.26	85.08	92.20	64.80	76.81	83.24	63.20	2270	91.30	86.66	88.30	99.84%
	35%	75.62	71.68	68.32	61.20	71.64	78.31	45.00	2140	85.06	77.61	81.39	88.28%
	9%	43.84	26.20	26.81	44.90	54.56	62.33	31.60	1799	19.65	16.66	17.22	46.99%
26B w/ SGP (ours)	64%	82.41	85.04	92.12	65.07	76.71	83.30	65.60	2259	91.07	86.71	88.05	100.14%
	35%	81.97	81.68	91.14	64.62	75.72	82.17	63.20	2258	89.38	84.35	86.07	98.36%
	9%	78.98	72.96	87.26	62.10	72.23	75.56	52.10	2004	80.36	72.22	77.45	89.58%



small VLM