

# SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device

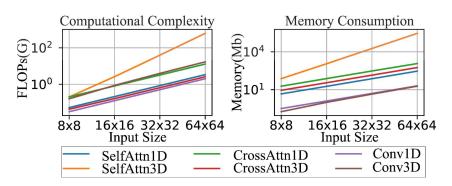
Yushu Wu, Zhixing Zhang, Yanyu Li, Yanwu Xu, Anil Kag, Yang Sui, Huseyin Coskun, Ke Ma, Aleksei Lebedev, Ju Hu, Dimitris Metaxas, Yanzhi Wang, Sergey Tulyakov, Jian Ren

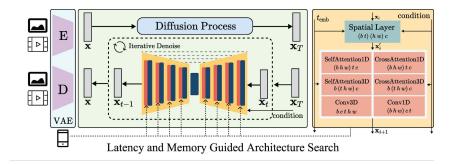






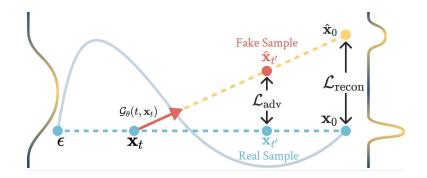
## Video Generation is Computationally Intensive

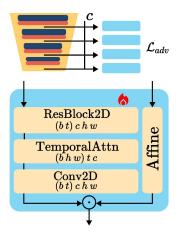

- **Diffusion Models are Powerful:** Recent success in generating cinematic, high-resolution videos.
- **High Computational Cost:** Video generation is significantly more demanding than image generation.
- **Cloud-Reliant:** Most advanced models run on powerful cloud servers (e.g., CogVideoX-5B takes 5 mins on an NVIDIA A100 GPU).
- Accessibility Barrier: This limits broader adoption, especially for mobile users.
- **The Gap:** Little focus on accelerating video models for mobile devices.


## SnapGen-V: Real-Time Video on Your Phone

- **What is SnapGen-V?** A comprehensive acceleration framework to bring large-scale video diffusion to mobile devices.
- **Key Achievement:** Generates a 5-second, high-quality, motion-consistent video on an iPhone 16 Pro Max within 5 seconds.
- **Compact & Efficient:** Achieved with only 0.6B parameters.
- **Impact:** Shifts video generation from minutes on GPUs to seconds on mobile.
- **A First:** Represents the first successful mobile deployment of this kind of video diffusion model, showcasing real-time potential.

#### Efficient Architecture


- Efficient Spatial Backbone:
  - Started with a pre-trained text-to-image model (Stable Diffusion v1.5).
  - Pruned it to achieve 2.5x size compression and >10x speedup for the image backbone on mobile.
- Hardware-Efficient Temporal Layer Design:
  - Systematically investigated various temporal layers (attention, convolutions).
  - Conducted a latency-memory joint architecture search to find the optimal design specifically for mobile constraints.



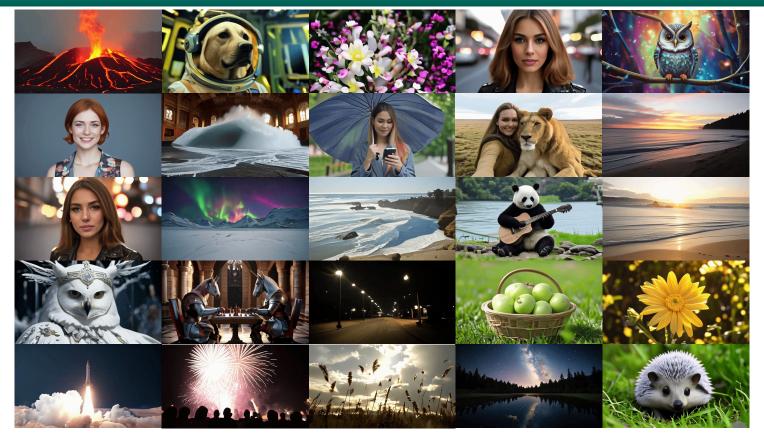



## Latent Adversarial Fine-tuning:

- Developed a tailored adversarial fine-tuning method.
- Reduced denoising steps from 25 to just 4 steps (and eliminated classifier-free guidance), leading to >12x speedup without sacrificing quality.
- Incorporating image-video discriminator heads for image-video joint-training.



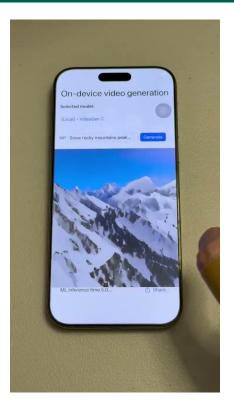



Adversarial Fine-tuning

### Results

- Speed: Generate 5-second video on iPhone 16 Pro Max in ~4.12 seconds.
- Size: Only 0.6 Billion parameters significantly smaller than server-side models.
- Quality: Achieves a competitive VBench score of 81.14, outperforming several larger and slower models.

| Model          | Type        | Steps | Params (B) | A100 (s) | iPhone (s) | Vbench (↑) |
|----------------|-------------|-------|------------|----------|------------|------------|
| OpenSora-v1.2  | DiT         | 30    | 1.2        | 31.00    | X          | 79.76      |
| CogVideoX-2B   | DiT         | 50    | 1.6        | 54.09    | X          | 80.91      |
| AnimateDiff-V2 | <b>UNet</b> | 25    | 1.2        | 9.04     | X          | 80.27      |
| AnimateDiffLCM | UNet        | 4     | 1.2        | 1.77     | ×          | 79.42      |
| Ours           | UNet        | 4     | 0.6        | 0.47     | 4.12       | 81.14      |


Table 1. Comparison of size (number of parameters), speed (tested on NVIDIA A100 and iPhone 16 Pro Max), and performance (on VBench [19]) for various models.



**Quality Results** 



**Quality Results** 



## Demo

# Thank You



Project Page