

LoRACLR: Contrastive Adaptation for Customization of Diffusion Models

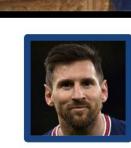
Enis Simsar¹

Thomas Hofmann¹

Federico Tombari^{2,3} Pinar Yanardag⁴

Introduction

- Objective: Seamlessly merge multiple LoRA models (one per concept) into a unified diffusion model.
- Significance: Existing methods struggle with identity entanglement or require joint retraining.



, in a castle, signing papers, in

style...

Contributions

Contrastive Merging Objective

- Aligns concept-specific LoRA outputs while preserving identity.
- Repels unrelated features to reduce interference.

No Need for Retraining

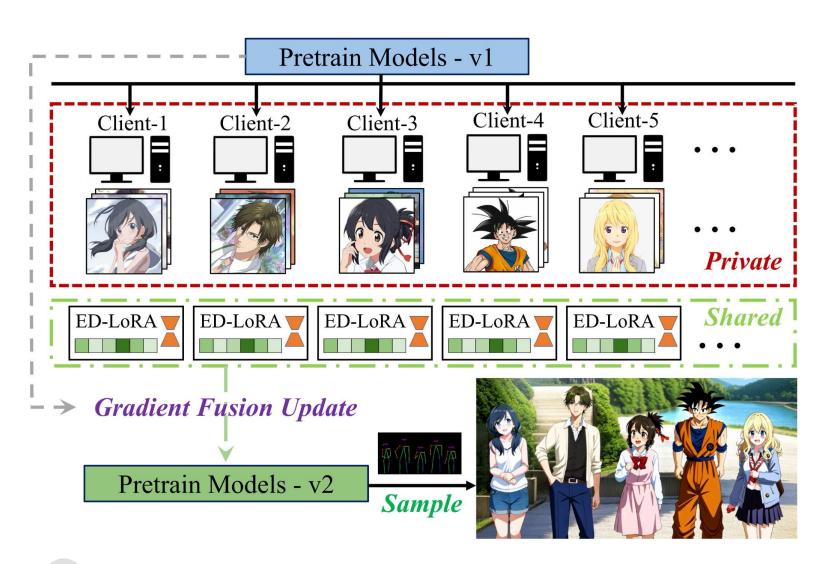
Operates post-hoc using pre-trained LoRA models.

Scalability & Efficiency

- Merges up to 12 LoRAs in ~5 minutes.
- Output quality holds up even with many concepts.

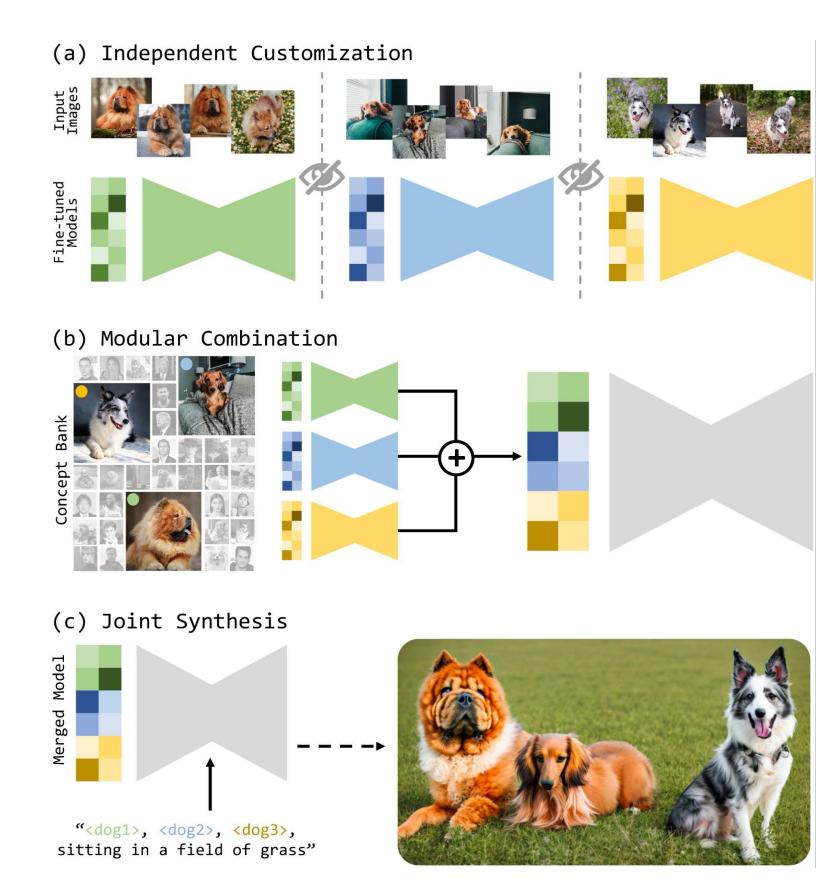
Mix-of-Show^[1]

- Merges multiple concepts using
 Embedding-Decomposed LoRAs (ED-LoRA)
- Requires access to original training data
- Proposes decentralized training of LoRAs per concept → Each LoRA trained independently, merged via gradient fusion
- Incompatible with community LoRAs

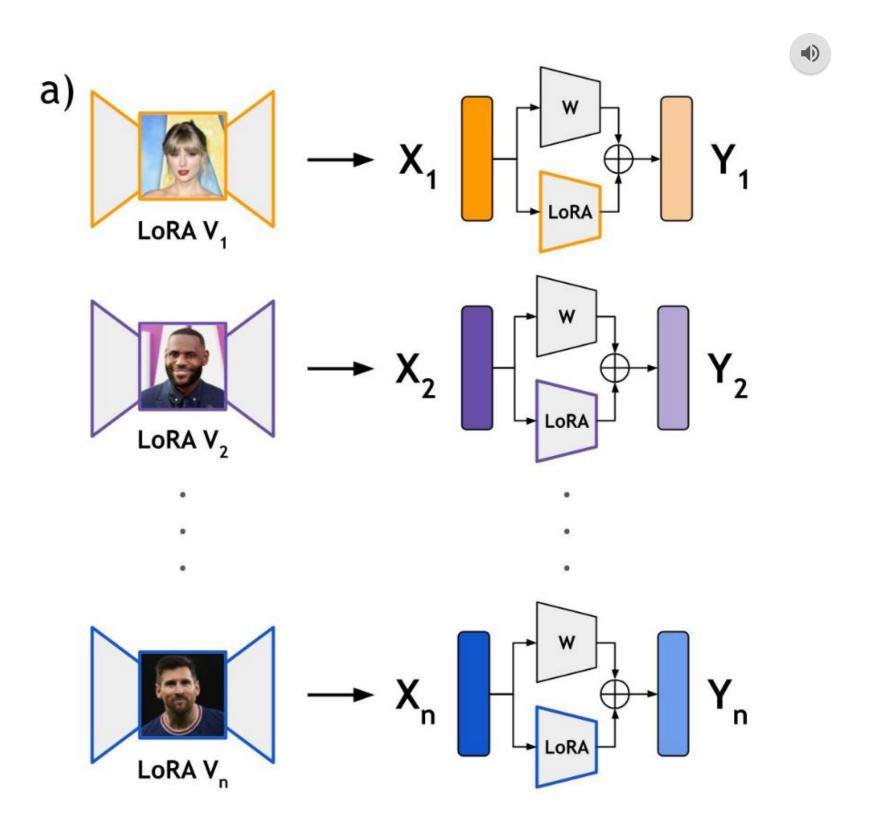


Orthogonal Adaptation^[2]

- Enforces orthogonality across LoRA directions during fine-tuning
- Mitigates interference, but:
 - Requires access to original training data
 - Requires retraining from scratch
 - Less efficient for large-scale merging since it requires training data and retraining



Collecting Features from Individual LoRAs



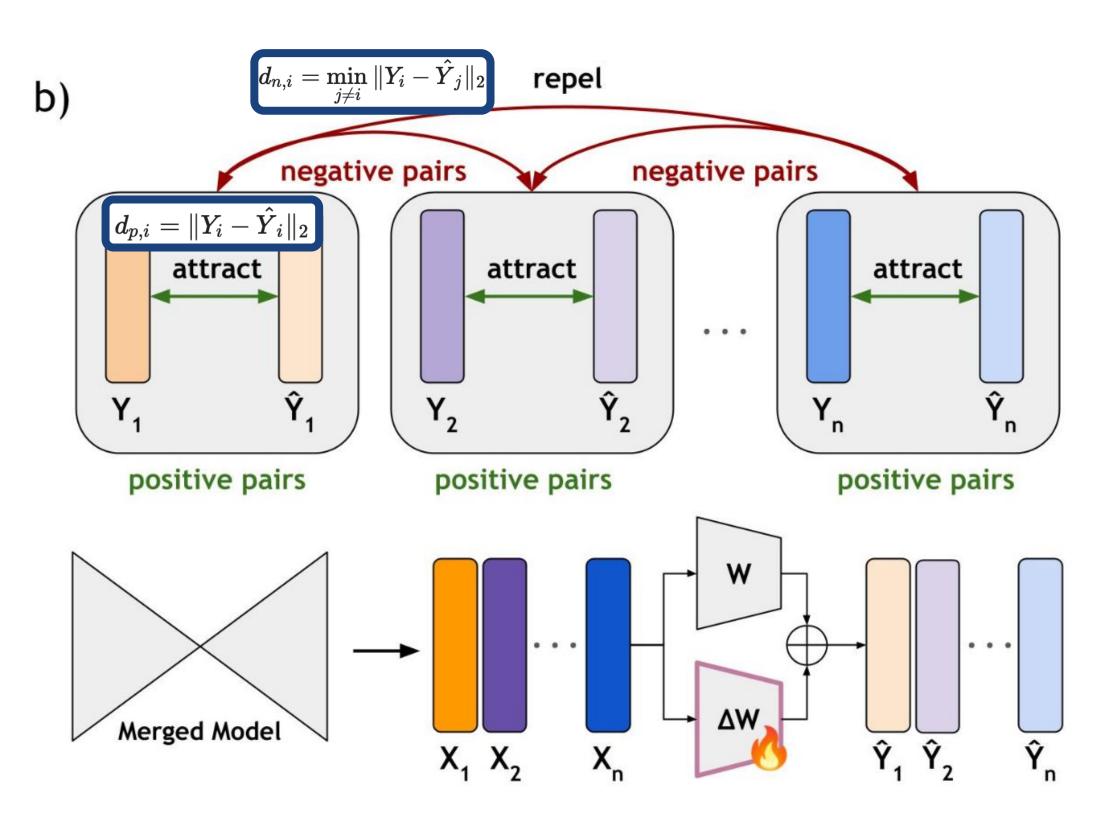
Merging LoRAs by applying Contrastive Objective

Delta-Based Merging

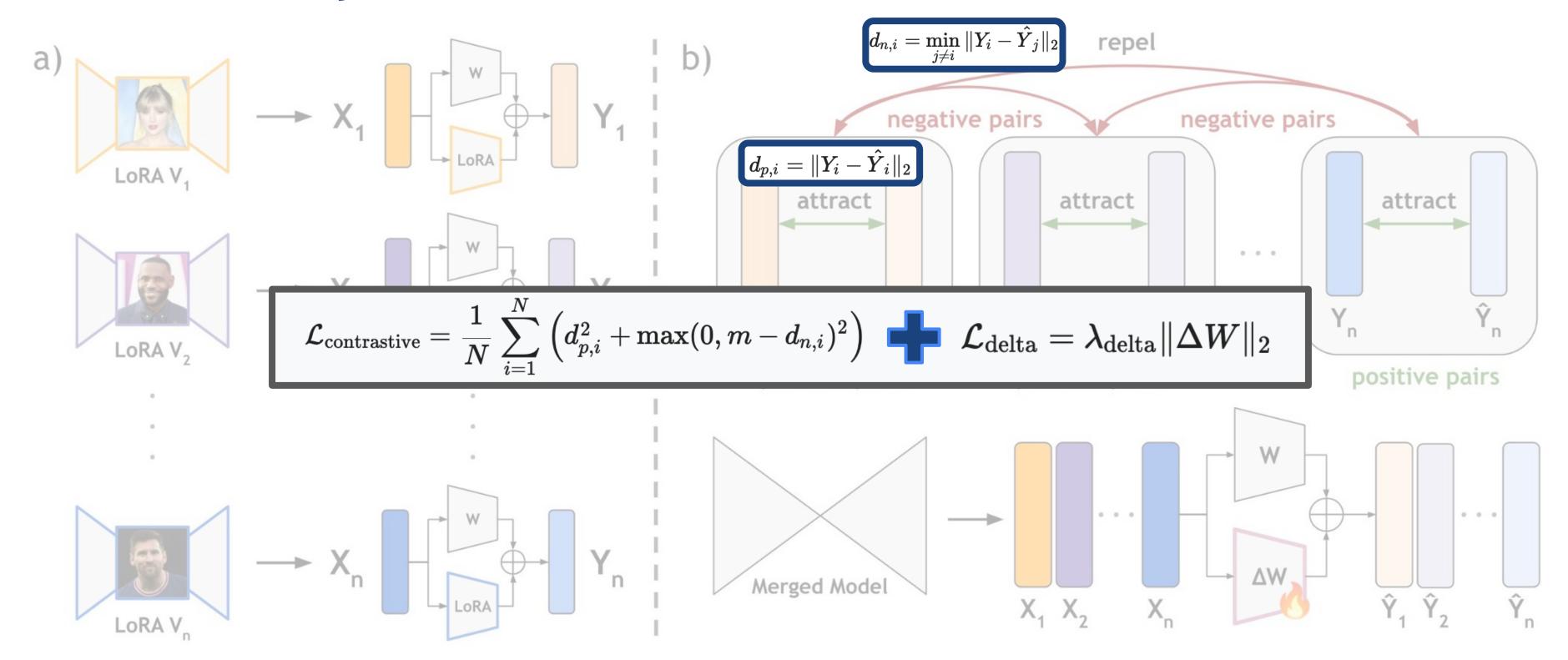
Learns a delta ΔW added to base weights, not touching original weights.

Contrastive Loss

- Positive pairs: original LoRA vs. merged output for same concept → attract.
- Negative pairs: original vs. merged for different concepts → repel.



Overall Objective



Qualitative Results

- Preserves visual identity across subjects.
- Works across diverse styles and scenes (comic, sci-fi, oil painting).

Qualitative Comparison

- LoRACLR preserves individual identities, even with six distinct subjects.
- Competing methods show identity drift and visual inconsistency.

Ours

Mix-of-Show Prompt+

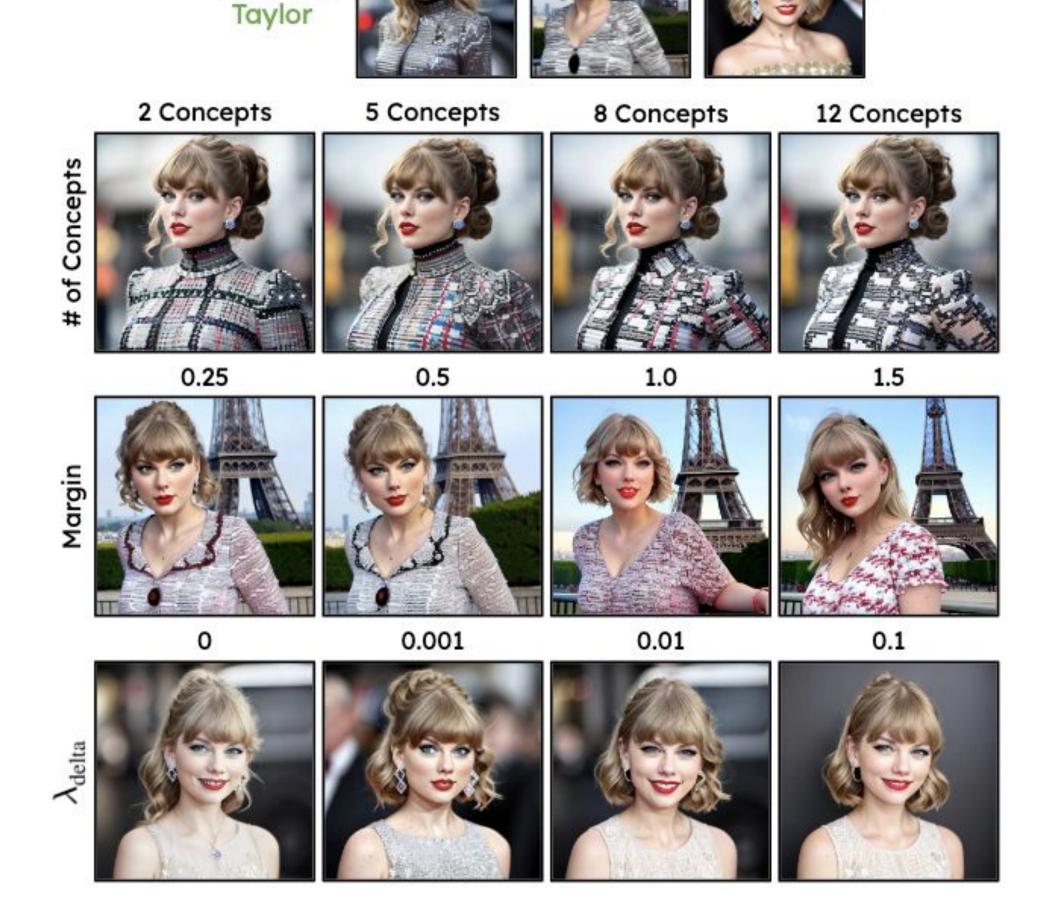
inside a spaceship

Quantitative Results

Methods	Text Alignment ↑			Image Alignment ↑			Identity Alignment ↑		
	Single	Merged	Δ	Single	Merged	Δ	Single	Merged	Δ
Prompt+	.643	.643	_	.683	.683	_	.515	.515	<u> </u>
Custom Diffusion	.668	.673	+.005	.648	.623	025	.504	.408	096
DB-LoRA	.613	.682	+.069	.744	.531	213	.683	.098	585
Mix-of-Show (FedAvg)	.625	.621	004	.745	.735	010	.728	.706	022
Mix-of-Show (GradFusion)	.625	.631	+.006	.745	.729	016	.728	.717	011
Orthogonal Adaptation	.624	.644	+.020	.748	.741	<u>007</u>	.740	.745	+.005
LoRACLR (Ours)	.668	.665	003	.766	.776	+.010	.799	.828	+.029

Ablation Study

- Margin variation: Shows
 over- or under-separation of
 identities
- λ_{delta} variation: Low λ keeps fidelity, high λ over-regularizes
- Scaling: Performance holds as concept count increases



Concept:

Experiments

Complex Scenes & Prompts

, holding

hands walking through a field of tall grass...

is wearing clothes in noir detective style,

has the crown on the top of head, and they are on the deck of a wooden ship.

Conclusion

- LoRACLR introduces a novel post-training approach for merging independently trained LoRA models into a unified diffusion model, enabling multi-concept image synthesis with minimal interference.
- Through a contrastive learning objective, LoRACLR maintains the distinctiveness of each concept while allowing them to coexist in rich, prompt-driven scenes.
- LoRACLR unlocks new potential for creative applications like personalized art, storytelling, and design while also raising important questions about responsible use of generative AI technologies.

Thank you!

ExHall D Poster #242

Sat 14 Jun 10:30 a.m. CDT — 12:30 p.m. CDT

