

ATP: Adaptive Threshold Pruning for Efficient Data Encoding in **Quantum Neural Networks**

Conference on Computer Vision and Pattern Recognition (CVPR), 2025.

Mohamed Afane¹, Gabrielle Ebbrecht¹, Ying Wang², Juntao Chen¹, and Junaid Farooq³

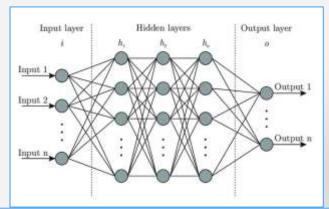
¹Fordham University

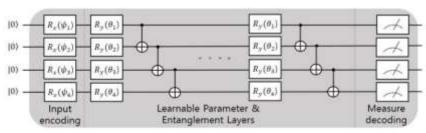
²Stevens Institute of Technology ³University of Michigan-Dearborn

Background

Quantum Neural Networks (QNNs) vs. Classical Neural Networks

- QNNs use quantum circuits to process information, unlike classical NNs that rely on matrix multiplications..
- QNNs can exploit entanglement to learn representations differently from classical networks.
- Potential advantages: higher expressive power & improved efficiency for certain tasks.





Superposition

Qubits exist in linear combinations of 0 and 1 states, represented as:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle,$$

Where α and β are complex numbers that satisfy the constraint $|\alpha|^2 + |\beta|^2 = 1$

This property is *superposition*

- Allows for concurrent calculations
- Algorithms are inherently parallel

Entanglement

- The state of one qubit directly influences the state of another
- Not constrained by distance
- Enables intricate encoding, but challenging to preserve

An entangled state can be expressed as:

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$$

Entanglement Entropy (EE)

- Quantifies correlation between different parts of the system
- Reflects a model's capacity to capture intricate relationships

LOW

Efficient resource usage Reduced complexity

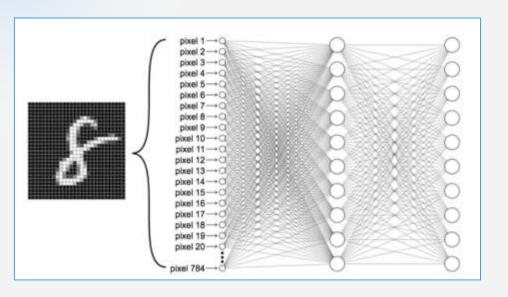
HIGH

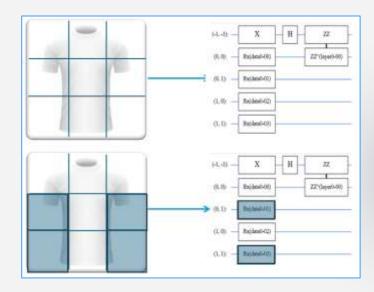
Qubit interdependence
Potential overfitting

Need some balance!

Introduction

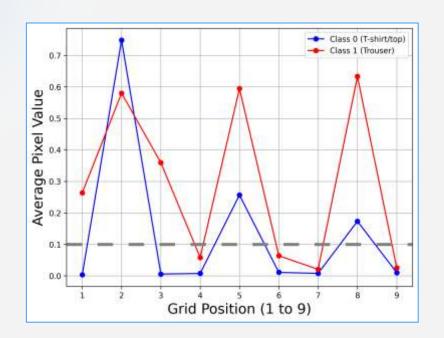
How are images processed by computers?





Introduction

How are images processed by computers?



Introduction

In this work, ATP is applied before encoding data into quantum states.

Angle Encoding

Each pixel value $x_{i,j}$ of an image is mapped onto an angle $\theta_{i,j}$ for the RX gate:

$$|x\rangle = \bigotimes_{i=1}^{N} \cos(x_i) |0\rangle + \sin(x_i) |1\rangle$$

→ Straightforwardly represents pixel intensities, but can introduce redundancy for higher-dimensional data

Amplitude Encoding

Encodes normalized data values as amplitudes of a quantum state

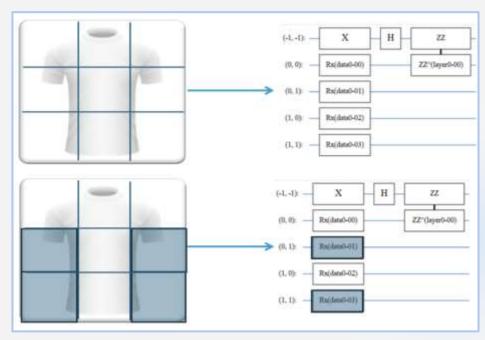
$$|\psi\rangle = \sum_{i=0}^{2^n - 1} x_i |i\rangle$$

→ Faces scalability challenges for large datasets

Adaptive Threshold Pruning

Optimize encoding process by adaptively pruning non-essential features

- Reducing qubit usage and entanglement in the circuit
- Set dynamic thresholds for feature pruning
- Selectively remove low-variance
 data to maintain model performance
 while lowering entanglement entropy

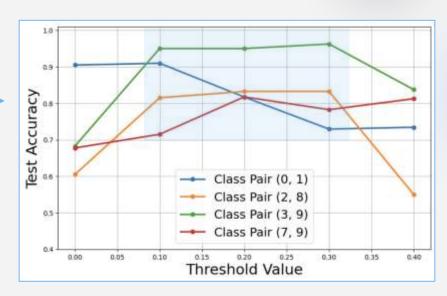


Data Pruning Effects on Accuracy

Moderate pruning is generally optimal

- Ranging from 0.1 to 0.3 for MNIST
- Eliminates non-essential features
- Preserves critical distinctions

Higher thresholds reduce accuracy by removing valuable details.



Test accuracy when distinguishing various class pairs from MNIST

$$x_{\tau}(i,j) = \begin{cases} 0, & \text{if } \bar{x}_0(i,j) < \tau \text{ and } \bar{x}_1(i,j) < \tau, \\ x(i,j), & \text{otherwise,} \end{cases}$$

Setup

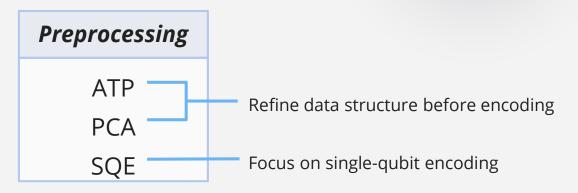
A 3-layer QNN model was applied on several datasets using various techniques:

Benchmark Datasets

MNIST
FashionMNIST
CIFAR
PneumoniaMNIST

Encoding Techniques

Angle Amplitude



Noise Conditions

- Introduced depolarizing noise at intensities of 3%, 5%, and 10% to evaluate robustness in realistic settings
- Allows for comparison of baseline performance and resilience to noise

Performance Results

Accuracy

Classes	Angle	Amplitude	ATP	PCA	SQE
		MNIST			
(0,1)	96.0	95.5	99.0	99.0	88.0
(0,3)	89.0	88.5	91.0	88.0	86.0
(2,4)	85.0	84.0	86.0	84.5	82.0
(5,6)	86.0	85.5	87.0	85.0	83.5
(2,8)	81.0	79.5	83.0	86.0	78.5
N 1888	110	Fashion MNI	ST		
(0,1)	88.5	88.0	91.5	88.5	86.0
(2,8)	86.0	84.5	86.0	86.0	83.0
(3,9)	94.0	87.0	94.0	93.0	91.0
(7,9)	82.0	78.0	83.0	79.0	77.0
	100	CIFAR			
(0,1)	70.0	68.5	74.2	68.0	66.0
	F	neumoniaMN	VIST		
(0,1)	81.0	68.5	87.0	80.0	75.5

Entanglement Entropy

Classes	Angle	Amplitude	ATP	PCA	SQE
		MNIST			
(0,1)	0.67	0.52	0.39	0.60	0.45
(0,3)	0.59	0.53	0.34	0.55	0.44
(2,4)	0.77	0.64	0.45	0.56	0.41
(5,6)	0.82	0.53	0.41	0.61	0.39
(2,8)	0.63	0.56	0.34	0.36	0.34
1	10	Fashion MNI	ST		
(0,1)	0.56	0.47	0.35	0.58	0.39
(2,8)	0.52	0.50	0.35	0.41	0.38
(3,9)	0.54	0.62	0.38	0.55	0.42
(7,9)	0.59	0.58	0.41	0.64	0.43
		CIFAR			
(0,1)	0.63	0.51	0.46	0.65	0.43
	F	neumoniaMN	VIST		
(0,1)	0.88	0.79	0.37	0.59	0.42

Across the majority of datasets and class pairs, ATP achieves the **highest accuracy** and consistently **minimizes EE** → lowers complexity without compromising accuracy

Performance Results: Depolarizing Noise

Accuracy

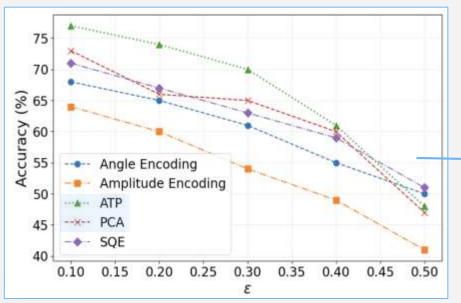
Classes	Angle	Amplitude	ATP	PCA	SQE
		MNIST			
(0,1)	87.0	86.4	89.0	89.0	88.2
(0,3)	82.4	80.5	83.0	78.9	81.9
(2,4)	80.2	68.8	71.0	79.7	79.8
(5,6)	70.8	69.4	73.0	68.5	74.0
(2,8)	68.8	57.4	76.5	74.9	75.2
		Fashion MNI	ST		
(0,1)	80.5	79.0	84.9	84.9	82.1
(2,8)	76.1	75.4	79.3	78.6	79.5
(3,9)	84.3	78.2	87.9	86.5	86.7
(7,9)	70.0	66.2	68.4	73.2	74.5
		CIFAR			60.
(0,1)	60.4	59.0	61.0	57.8	58.5
	I	neumoniaMN	VIST		
(0,1)	70.5	63.4	76.0	67.3	68.7

Depolarizing noise was introduced at intensities of 3-10%

- Allows for comparison of baseline performance and resilience to noise
- Encoding techniques with lower EE (ATP and SQE) showed stronger robustness
 - Accuracy reductions were limited to
 3-8 points
- Angle, Amplitude, and PCA see accuracy drops between 4-17 points

Adversarial Robustness

We applied Fast Gradient Sign Method (FGSM) with an attack strength of $\varepsilon = 0.3$ across datasets.



Attack effectiveness after adversarial training

- Direct encoding methods were more susceptible to attacks
- ATP, PCA, and SQE exhibit moderate robustness

After adversarial training was applied, ATP and PCA had enhanced performance.

- Filtering and pruning decreases sensitivity to irrelevant perturbations
- Further measures may be needed for robustness under higher ε

Conclusion

Limitations

- Selective pruning may introduce
 bias toward high-variance regions
 - Impact generalization
- Optimization incurs moderate computational overhead
 - Impact efficiency in larger applications

Future Work

- Explore adaptability to datasets with varied data distributions
 - Current evaluations focus on standard QNN benchmarks
 - Multi-class classification.

THANK YOU

Questions?

in/afane

mafane@fordham.edu

