

Activating Capability of Linear Attention for Image Restoration

Yubin Gu1, Yuan Meng1, Jiayi Ji12, Xiaoshuai Sun1 1Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of China, Xiamen University, China 2National University of Singapore, Singapore

Introduction

Image Restoration (IR) is essential for recovering clear images from degraded inputs, supporting downstream vision tasks. While CNN-based models are efficient, they lack global context modeling. Transformer-based IR methods address this but suffer from high computational cost due to quadratic attention.

State-space models like Mamba offer efficient alternatives for sequence modeling but face challenges when applied to 2D flattening disrupts spatial locality, images, unidirectional recurrence ignores multi-directional dependencies.

To overcome these issues, we propose ACL, a novel IR architecture that replaces Mamba's state-space module with Linear Attention, enabling efficient, multi-directional global feature modeling with linear complexity. We design LAMA, a core module built on LA to capture long-range dependencies, and MDC, a lightweight multi-scale dilated convolution module to enhance local detail restoration.

ACL forms an encoder-decoder structure that balances global and local modeling. On deblurring and deraining benchmarks, ACL achieves competitive or superior performance compared to SOTA Transformer models, with significantly fewer parameters and lower inference cost.

Main Contributions

- We propose ACL, combining Linear Attention with the Mamba framework for efficient global modeling in image restoration.
- We introduce LAMA for global dependencies and MDC for local detail enhancement.
- state-of-the-art with lower performance ACL achieves computational complexity.

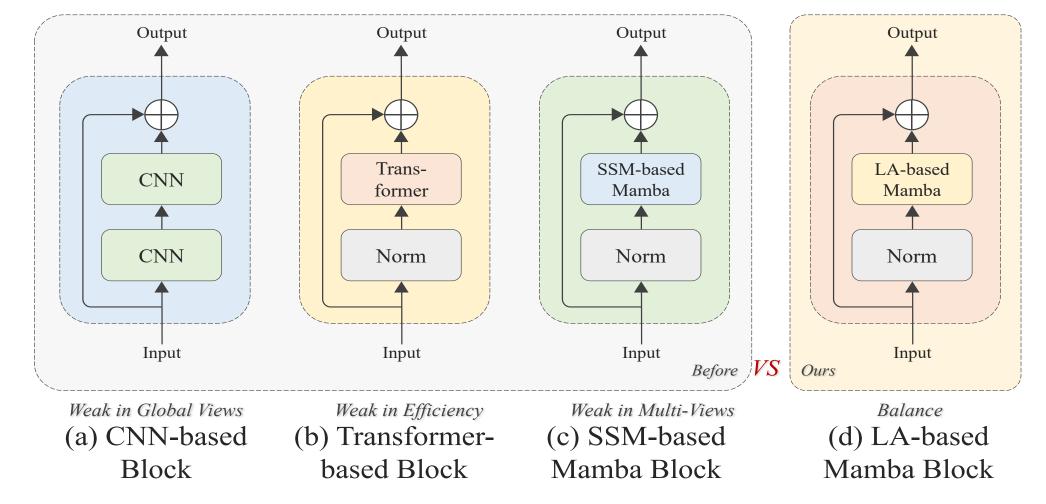


Figure 1. Basic modules for different mechanisms

Overall Pipeline

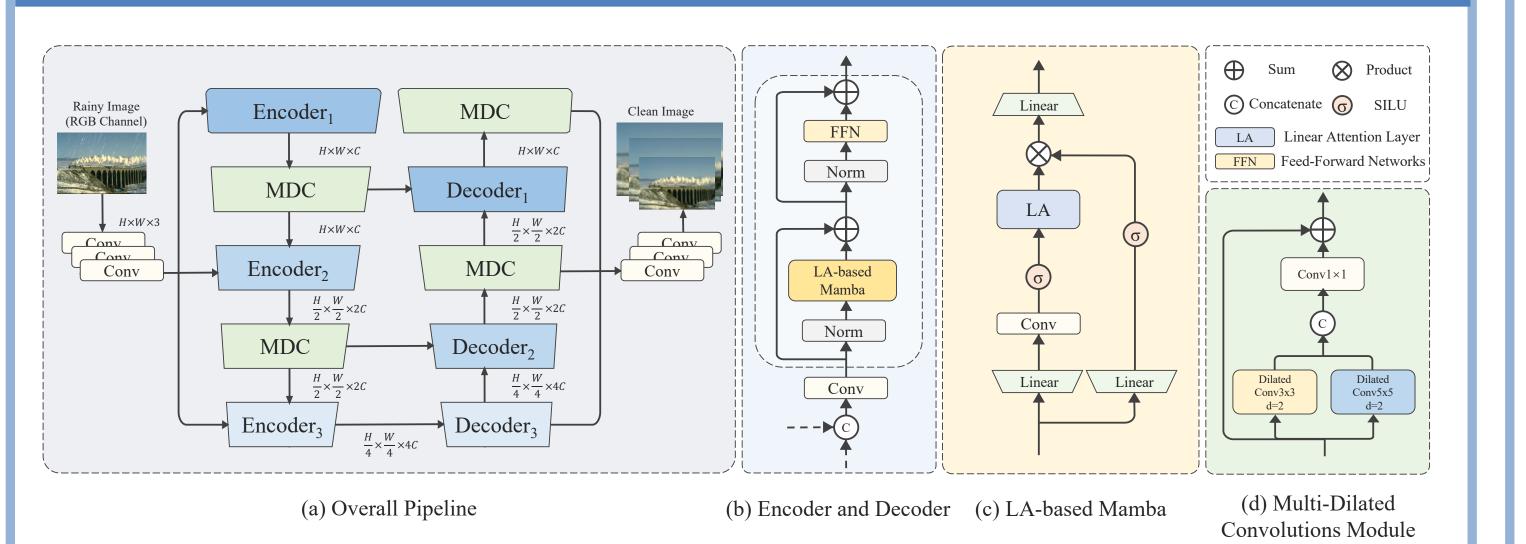


Figure 2. The Pipeline of our proposed IR model, including LAMA and MDC modules.

Result

Methods	Restormer		MAXIM		MPRNet		IRNeXt		MambaIR		ACL (Ours)	
Dataset	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Rain100L	38.99	0.978	38.06	0.977	37.84	0.959	38.24	0.972	38.78	0.977	39.18	0.983
Rain100H	31.46	0.904	30.81	0.903	30.41	0.874	31.64	0.902	30.62	0.893	32.22	0.920
Average	35.23	0.941	34.44	0.940	34.13	0.917	34.94	0.937	34.70	0.935	35.70	0.952

Table 1. Quantitative comparison results on the Rain100L and Rain100H.

Figure 3. Qualitative comparison results on the rain streak removal.

					Lange II
Methods	PSNR	SSIM	FLOPs	Param (M)	244 674
MIMO	32.68	0.959	617	16.1	(a) Blur Region
MPRNet	32.66	0.959	777	20.1	240 021
Restormer	32.92	0.961	140	26.1	(e) IRNeXt Figure 4. Q
IRNeXt	33.16	0.962	114	13.21	
Stripformer	33.08	0.962	170	20.0	(a) Rainy Imag
Ours	33.25	0.964	55	4.6	
					(1) 17

Table 2. Quantitative results on the GoPro (Deblurring)

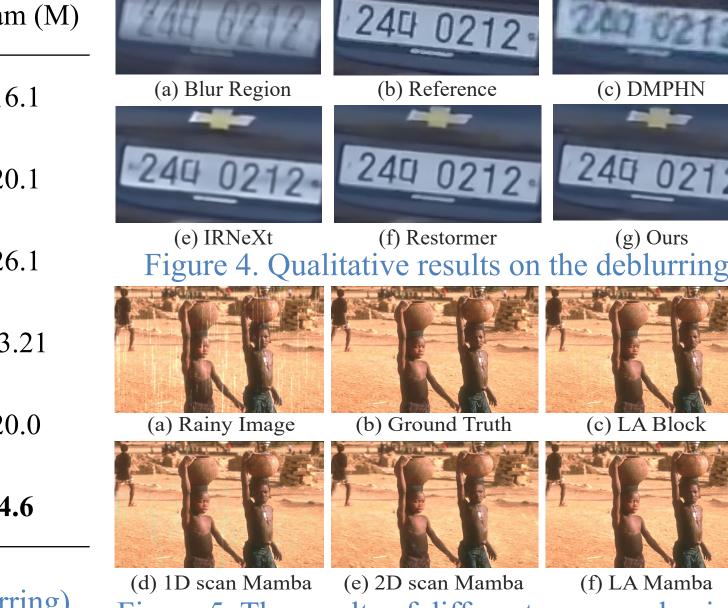


Figure 5. The results of different scan mechanism