

Optical-Flow Guided Prompt Optimization for Coherent Video Generation

Hyelin Nam[†]‡*

Jaemin Kim‡*

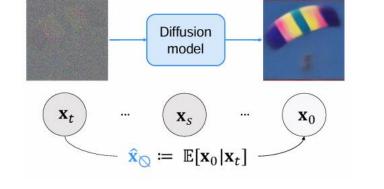
Dohun Lee‡

Jong Chul Ye‡

†EverEx, ‡Korea Advanced Institute of Science and Technology (KAIST), *Equal contribution

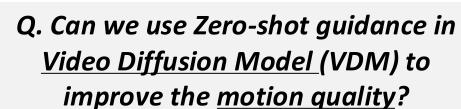
Background

Zero-shot Guidance in Diffusion Models



$$\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \left(\hat{\mathbf{x}}_{\bigcirc} - \gamma_t \nabla_{\hat{\mathbf{x}}_{\bigcirc}} \ell(\hat{\mathbf{x}}_{\bigcirc}) \right) + \sqrt{1 - \bar{\alpha}_{t-1}} \hat{\boldsymbol{\epsilon}}_{\bigcirc}$$

- 1. Modulation for guidance
 - 2. Follow unconditional DDIM sampling



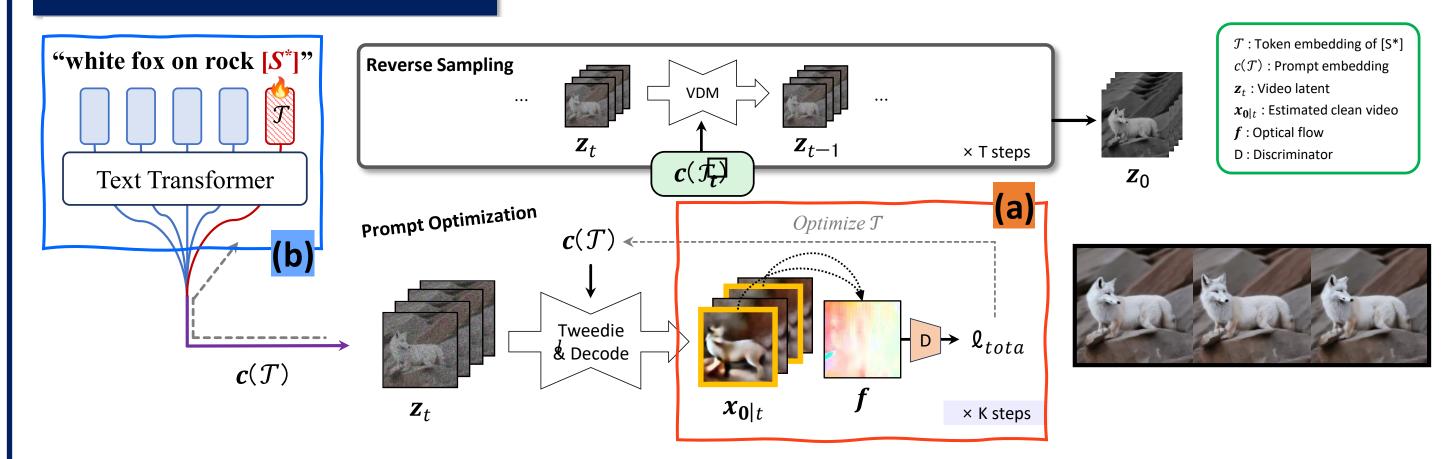
1. Loss Ambiguity

: Motion information must be disentangled to define an effective loss.

2. Computational Cost

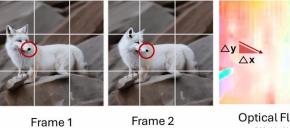
: Consistent updates need all-frame loss computation, which is costly.

Method: MotionPrompt



(a) Optical Flow-based Discriminator

Use **optical flow** to disentangle motion from pixel appearance.



Pre-train a discriminator to classify real and generated flows, and guide sampling toward realistic motion.

$$\ell_{\text{disc}}(\boldsymbol{z}_t, \boldsymbol{c}(\mathcal{T})) := \log(1 - \phi_{\theta^*}(\mathbf{f}(\hat{\boldsymbol{x}}_t(\boldsymbol{c}(\mathcal{T}))))$$

$$\ell_{\text{total}}(\boldsymbol{z}_t, \mathcal{T}) := \lambda_1 \ell_{\text{disc}}(\boldsymbol{z}_t, \boldsymbol{c}(\mathcal{T})) + \lambda_2 \ell_{\text{TV}}(\boldsymbol{z}_t, \boldsymbol{c}(\mathcal{T}))$$

$$+ \lambda_3 ||\mathcal{T} - \mathcal{T}_0||_2^2,$$

(b) Prompt Optimization

$$\widehat{c}_t \coloneqq c(\widehat{T}_t), \widehat{T}_t = \underset{\mathcal{T}}{\operatorname{argmin}} \ \ell(z_t, c(\mathcal{T}))$$

$$z_{t-1} = \sqrt{\bar{\alpha}_{t-1}}(\widehat{z}_t(\widehat{\boldsymbol{c}}_t)) + \sqrt{1 - \bar{\alpha}_{t-1}} \epsilon_{\theta}(z_t, t, \widehat{\boldsymbol{c}}_t)$$

- To reduce memory and ensure frame consistency, attach learnable tokens to the prompt instead of tuning the full embedding. This preserves semantic meaning and provides consistent guidance across frames.
- Since it affects low-frequency structure, optimize only during the first 10–15 timesteps.

0.55 -

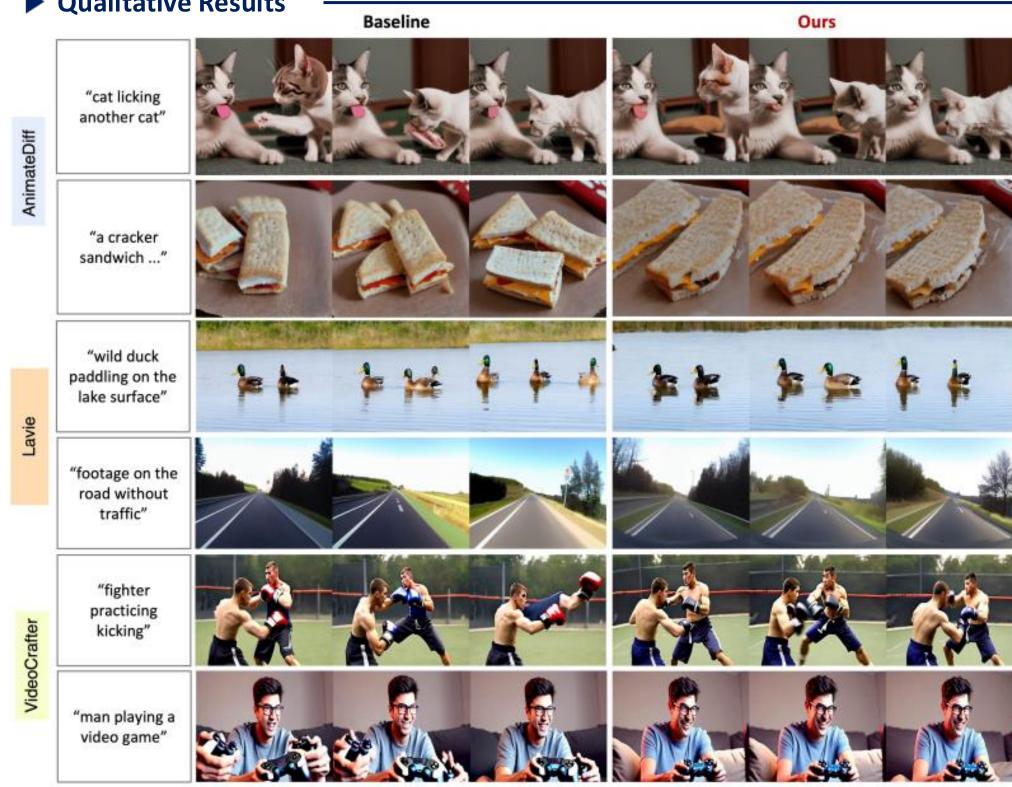
0.50

0.45

0.40

Results

Qualitative Results



Quantitative Results

	Temporal Quality					Text Alignment	
Method	Subject Consistency (†)	Background Consistency (†)	Temporal Flickering (†)	Motion Smoothness (↑)	Dynamic Degree (†)	Overall Consistency (†)	
Lavie [36] Lavie + Ours	0.9599 0.9646	0.9739 0.9781	0.9487 0.9625	0.9690 0.9765	0.5150 0.3963	0.2506 0.2415	
AnimateDiff [14] AnimateDiff + Ours	0.9488 0.9528	0.9755 0.9763	0.9228 0.9258	0.9578 0.9599	0.4700 0.4125	0.2532 0.2529	
VideoCrafter2 [4] VideoCrafter2 + Ours	0.9736 0.9745	0.9559 0.9774	0.9559 0.9588	0.9750 0.9759	0.4088 0.3938	0.2498 0.2451	

User Study

→ Top 50 → Lowest 50

901 881 861 841 821 801 781 761 741 721 701

Baseline	Win	Tie	Lose
AnimateDiff	66.5	17.8	15.7
Lavie	55.1	21.1	23.8
VideoCrafter2	53.0	17.7	29.3

Extensions to I2V

Experiments

▶ Discriminator Generalization

- We perform **cross-dataset inference** using a discriminator trained on a different dataset.
- It shows improved performance, demonstrating **generalization** ability of the discriminator.

AD (Defualt) Source Model for Fake Data VC2 Lavie 0.9625 0.9535 **Subject Consistency** 0.9528 0.9753 0.9764 **Background Consistency** 0.9763 Temporal Flickering 0.9258 0.9490 0.9283 **Motion Smoothness** 0.9691 0.9617 0.9599 0.4088 0.4100 Dynamic Degree 0.4125 **Overall Consistency** 0.2529 0.2473 0.2509

▶ Token Variations

- We measure **cosine similarity** between initial and optimized token embeddings over time.
- It shows similarity decreases and stabilizes; high-consistency videos show less token shift, indicating reduced optimization when judged as realistic.