

POP-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality

Joey Wilson, Marcelino Almeida, Sachit Mahajan, Martin Labrie, Maani Ghaffari, Omid Ghasemalizadeh, Cheng-Hao Kuo, Arnie Sen

Motivation

- Training cost scales with number of images and acquiring new training views is expensive.
- Current information formulations for 3D-GS are rigid/constrained to one function.
- Classical approaches formulate view selection through optimal experimental design, yet application is non-trivial.

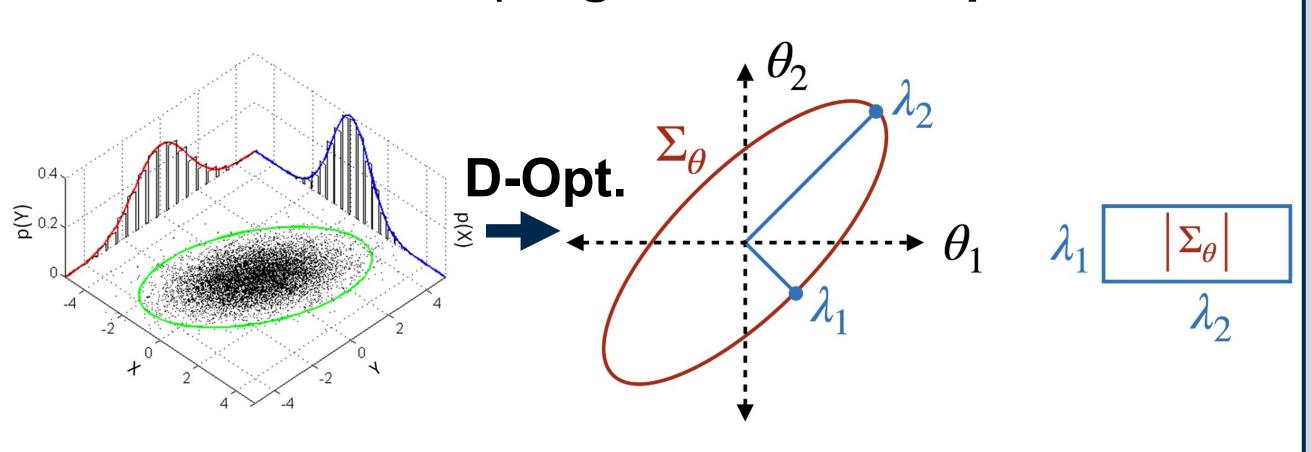
P-Optimality (T.O.E.D.)

- Formulate information gain as a reduction of uncertainty.
- Quantified as a **function of covariance** matrix. depending on a scalar p [1].

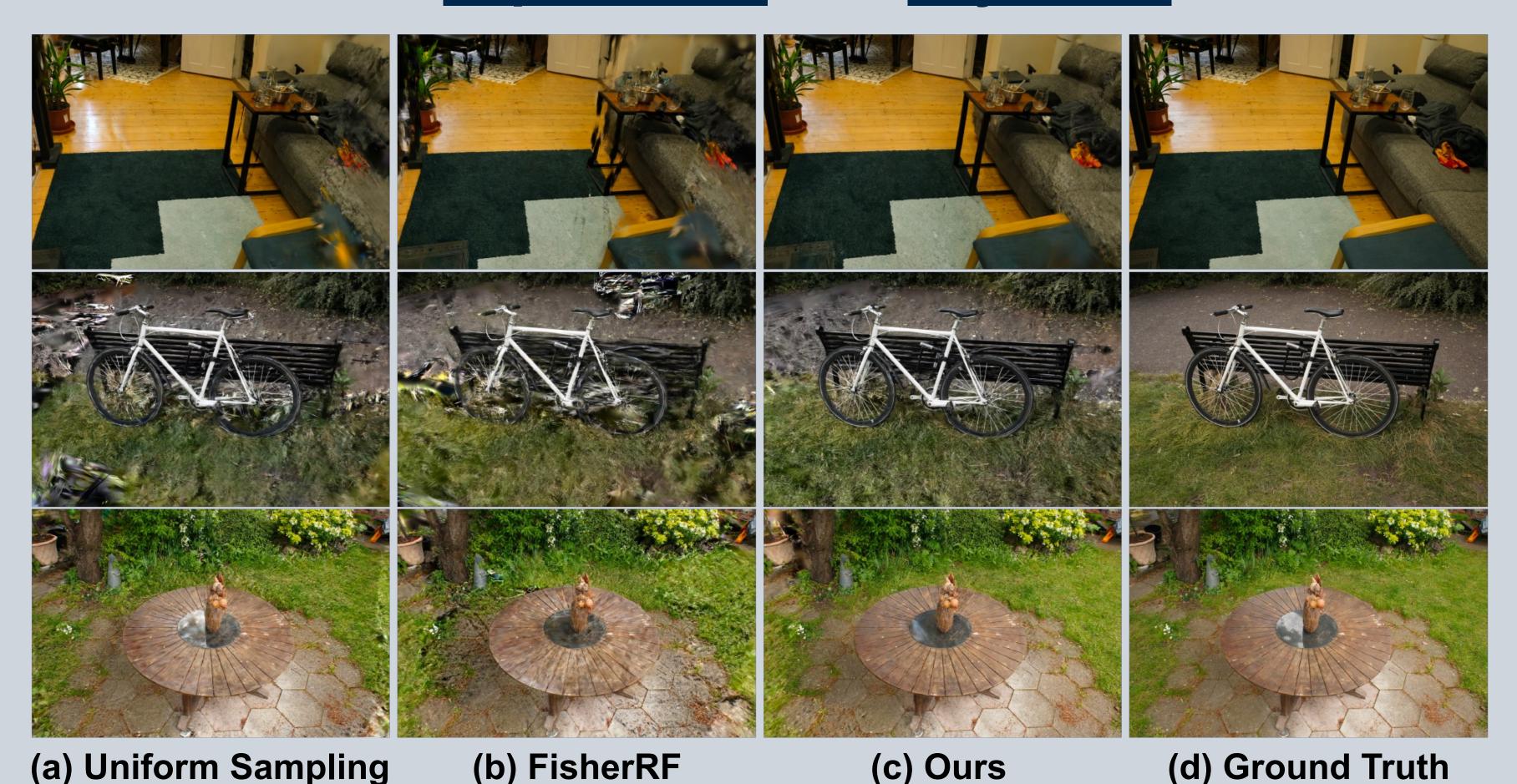
Table 1. Properties of P-Optimality for different values of p. Note: λ_k represent the eigenvalues of the covariance matrix Σ_i .

	T-optimality	A-optimality	D-optimality	E-optimality
p	1	-1	0	$\mp\infty$
Equivalent Formulae	$rac{1}{l}\mathrm{tr}\left(\mathbf{\Sigma}_i ight) = rac{1}{l}\sum_k^l \lambda_k$	$\left(rac{1}{l}\mathrm{tr}\left(oldsymbol{H}_i ight) ight)^{-1} = \left(rac{1}{l}\sum_k^l\lambda_k^{-1} ight)^{-1}$	$\sqrt[l]{ \mathbf{\Sigma}_i } = \exp\left(rac{1}{l}\sum_k^l \log \lambda_k ight)$	$\min_{\lambda_k} \max_{\lambda_k}$
Meaning	Average Variance	Harmonic Mean Variance	Volume of covariance hyper-ellipsoid	Single extreme eigenvalue

Each has a unique geometric interpretation



Efficient and flexible information quantification in 3D-GS for active <u>exploration</u> and <u>keyframe</u> selection.



Method

- **Construct Hessian matrix (right)** using Gauss-Newton Approximation $H(\theta) = J_{\theta}^{T}J_{\theta}$
- Relate <u>covariance</u> to Hessian $\Sigma \propto H(\theta)^{-1}$ (asymptotic relationship in MLE for exponential family)
- 3. Approximate as diagonal or block-diagonal due to size.
- Measure reduction in covariance with P-Optimality.

Ellipsoid 1 Ellipsoid 2

Hessian Matrix Approximation

Results

1. Next Best View

(a) Uniform		(b) FisherRF	
Method	PSNR (†)	SSIM (†)	LPIPS (↓)
Jniform Sampling FisherRF [2]	23.32 24.59	0.885 0.897	0.101 0.091
A-Opt. (Simple) E-Opt. (Simple) T-Opt. (Simple) D-Opt. (Simple)	22.39 21.40 25.40 25.52	0.876 0.862 0.908 0.909	0.116 0.129 0.080 0.078
O-Opt. (Block)	<u>25.41</u>	0.908	0.078

D-Opt. (Block)	18.15	0.548	0.401
D-Opt. (Simple)	<u>17.95</u>	0.535	0.411
T-Opt. (Simple)	17.91	0.520	0.420
E-Opt. (Simple)	15.33	0.436	0.488
A-Opt. (Simple)	15.55	0.452	0.480
FisherRF [2]	16.81	0.493	0.445
Uniform Sampling	17.29	0.508	0.432

(a) Mip-Nerf360 [3] Data

(b) Blender [4] Data

3. Uncertainty Correlation

2. Keyframe Selection

•			
Method	PSNR (↑)	SSIM (†)	LPIPS (↓)
Jniform Sampling FisherRF	23.47 18.37	0.888 0.829	0.109 0.184
A-Opt. (Simple)	17.05	0.811	0.226
E-Opt. (Simple)	16.55	0.786	0.255
-Opt. (Simple)	24.90	0.903	0.096
O-Opt. (Simple)	24.26	0.899	0.101
O-Opt. (Block)	24.53	0.902	0.099

T and D Opt. most effective

Uncertainty correlated w/ image quality

References

- Jack Kiefer, "General equivalence theory for optimum designs (approximate theory)". The Annals of
- Jiang et al., "FisherRF: Active View Selection and Uncertainty Quantification for Radiance Fields using Fisher Information", ECCV, 2024.
 - Barron et al., "Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields", CVPR, 2022.
- Mildenhal et al., "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis", ICCV, 2020