h-Edit: Effective and Flexible Diffusion-Based Editing via Doob's h-Transform

Toan Nguyen*, Kien Do*, Duc Kieu, Thin Nguyen A2I2, Deakin University, Australia. *Equal contribution

CVPR 2025

Training-Free Image Editing with Diffusion Models (1)

Source: a woman with [black] hair and red lipstick holding a flower Edit: a woman with [silver] hair and red lipstick holding a flower

Goal: Generate images that align with editing prompt (editing **accuracy**) while being **faithful** to the original image.

→ How to achieve and balance both targets? (**Problem 1**)

How diffusion models perform editing?

Inversion:

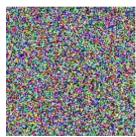


Source

Two popular types are DDIM Inversion and DDPM Inversion (slightly better).

Editing: Perform **step-by-step sampling** with editing conditions.

Often requires further attention control for faithfulness.



$$x_T^{\text{orig}} \longrightarrow x_0^{\text{edit}}$$

Training-Free Image Editing with Diffusion Models (2)

Problem 2:

How to combine multiple types of editing effectively?

For example: Text-guided and Style Editing.

Training-Free Image Editing with Diffusion Models (3)

Problem 3:

- Current literature do not pay attention on the editing process of diffusion models, lacking of **theoretical foundation**.
- → Struggle with the first two problems!!
 - Most of current text-guided methods focus on sampling from $\ p(x_{t-1} \mid x_t, c^{ ext{edit}})$
- ightarrow No guarantee to fall into the target distribution $p\left(x_{0}
 ight)p\left(c^{\mathrm{edit}}\mid x_{0}
 ight)$
- → By this approach, there is **no control for the trade-off** between editing & faithfulness.
- → How to **combine** with other editing conditions?

Motivation of *h*-Edit (1)

- We know the abstract target distribution is $\ p\left(x_{0}\right)p_{\mathcal{Y}}\left(y\mid x_{0}\right)$
- We know the starting distribution for editing is $p\left(x_{T}\right)$

Can be anything: text, graph, reference images, audio.

- Why don't we build a bridge to connect them?
- → **Guarantee** to fall into the target distribution.
- → For combining, we adjust the target distribution to

$$p\left(x_{0}\right)p_{\mathcal{Y}}\left(y_{1}\mid x_{0}\right)p\left(x_{0}\right)p_{\mathcal{Y}}\left(y_{2}\mid x_{0}\right)...p\left(x_{0}\right)p_{\mathcal{Y}}\left(y_{n}\mid x_{0}\right)$$

→ Naturally decompose the update into "reconstruction" term and "editing" term.

How *h*-Edit works?

A way of building the bridge is "Doob's h-transform" Source x_1^{base} x_0^{base} x_0^{edit} Doob's h-transform

How h-Edit works? h-transform + LMC sampling!

Implicit form:
$$p_{\theta}^{h}(x_{t-1}|x_{t}) = p_{\theta}(x_{t-1}|x_{t}) \frac{h(x_{t-1}, t-1)}{h(x_{t}, t)} \xrightarrow{p_{\mathcal{Y}}(y \mid x_{t-1})} p_{\mathcal{Y}}(y \mid x_{t-1})$$

Explicit form:
$$p^h\left(x_t\right) = \frac{p(x_t)h(x_t,t)}{\mathbb{E}_{p(x_0)}[h(x_0,0)]} \qquad p_{\mathcal{Y}}\left(y\mid x_t\right)$$

To sample x_{t-1}^{edit} , we perform Langevin Monte Carlo sampling to sample from $p_{\theta}^{h}\left(x_{t-1}|x_{t}\right)$ or with the score of $p^{h}\left(x_{t}\right)$

How h-Edit works? h-transform + LMC sampling! (2)

Explicit form:

$$x_{t-1} \approx x_t + \eta \nabla_{x_t} \log (p(x_t) h(x_t, t)) + \sqrt{2\eta} z$$

$$= \left(x_t + \eta \nabla_{x_t} \log p(x_t) + \sqrt{2\eta} z\right)$$

$$+ \eta \nabla_{x_t} \log h(x_t, t)$$

$$= \underbrace{x_{t-1}^{\text{base}}}_{\text{rec.}} + \eta \underbrace{\nabla_{x_t} \log h(x_t, t)}_{\text{editing}}$$

- Naturally decompose the update into "reconstruction" term and "editing" term.
- We can have multiple "editing" terms with any form.

How h-Edit works? h-transform + LMC sampling! (3)

Implicit form:
$$x_{t-1} \approx x_{t-1}^{\text{init}} + \gamma \nabla_{x_{t-1}} \log p^h \left(x_{t-1} | x_t \right) + \sqrt{2\gamma} z$$

$$= \left(x_{t-1}^{\text{init}} + \gamma \nabla_{x_{t-1}} \log p \left(x_{t-1} | x_t \right) + \sqrt{2\gamma} z \right)$$

$$+ \gamma \nabla_{x_{t-1}} \log h \left(x_{t-1}, t-1 \right)$$

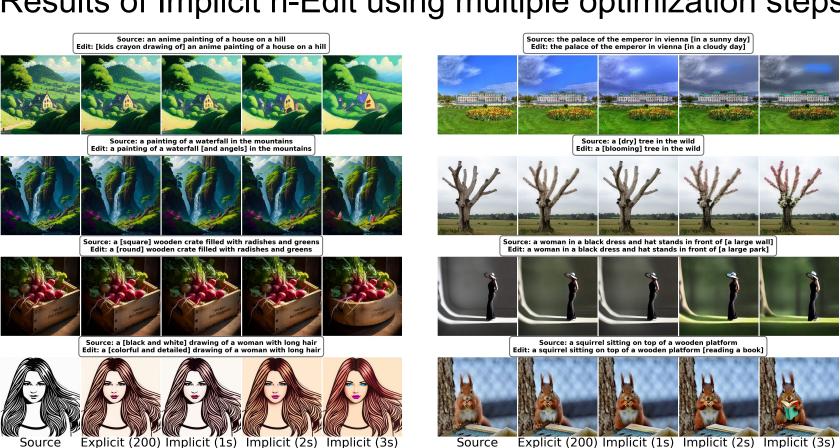
$$\approx \underbrace{x_{t-1}^{\text{base}}}_{\text{rec.}} + \gamma \underbrace{\nabla_{x_{t-1}} \log h \left(x_{t-1}^{\text{base}}, t-1 \right)}_{\text{editing}}$$

- What's special about implicit form? \rightarrow Optimization over the space of x_{t-1} as the editing term acts on x_{t-1}

$$\begin{aligned} x_{t-1}^{(0)} &= x_{t-1}^{\text{base}} \\ x_{t-1}^{(k+1)} &= x_{t-1}^{(k)} + \gamma \nabla_{x_{t-1}} \log h \left(x_{t-1}^{(k)}, t - 1 \right) \end{aligned}$$

Multiple
optimization steps
for hard editing
cases

Results of Implicit h-Edit using multiple optimization steps



How h-Edit works? Design h-function effectively!

Text-guided editing

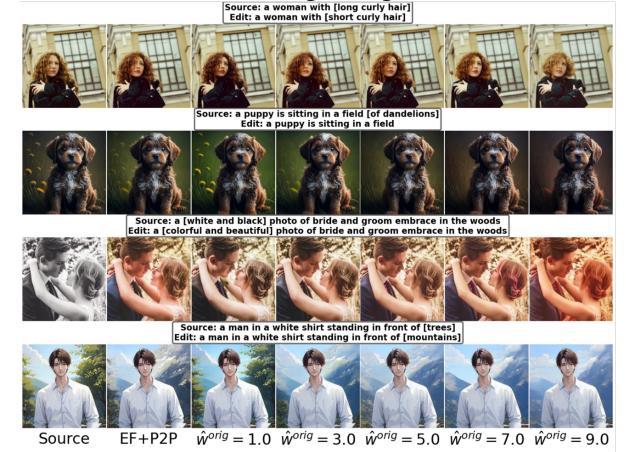
We introduce \hat{w}^{orig} at editing time (different to w^{orig} at inversion time)

$$\nabla \log h\left(x_{t-1}, t-1\right) \\
= \nabla \log p\left(y|x_{t-1}\right) \\
= \nabla \log p\left(x_{t-1}|y\right) - \nabla \log p\left(x_{t-1}\right) \\
-\frac{\tilde{\epsilon}_{\theta}\left(x_{t-1}, t-1, c^{\text{edit}}\right)}{\sigma_{t-1}} \\
-\frac{\tilde{\epsilon}_{\theta}\left(x_{t-1}, t-1, c^{\text{orig}}\right)}{\sigma_{t-1}}$$

$$(1 - w^{\operatorname{edit}}) \epsilon_{\theta} (x_{t-1}, t-1, \varnothing) + w^{\operatorname{edit}} \epsilon_{\theta} (x_{t-1}, t-1, c^{\operatorname{edit}})$$

$$\left(1-\hat{w}^{\mathrm{orig}}
ight)\epsilon_{ heta}\left(x_{t-1},t-1,arnothing
ight)+\hat{w}^{\mathrm{orig}}\epsilon_{ heta}\left(x_{t-1},t-1,c^{\mathrm{orig}}
ight)$$

$|\hat{w}^{\mathrm{orig}}|$ plays the role of removing "negative" information!



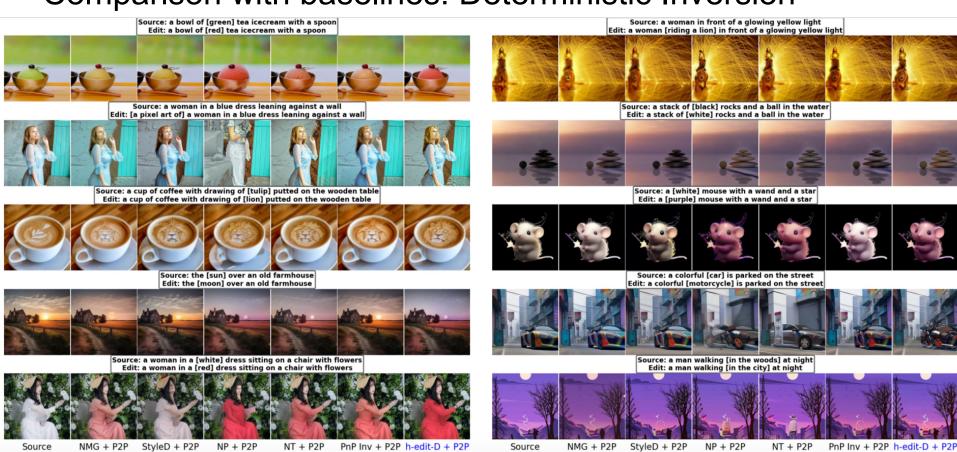
Quantitative Results on PIE-Bench

			GT TD G1	- 10	2210 21			
Inv.	Attn.	Method	CLIP Sim. ↑	Local CLIP ↑	DINO Dist. $_{\times 10^2} \downarrow$	LPIPS $_{\times 10^2} \downarrow$	$SSIM_{\times 10} \uparrow$	PSNR ↑
Deter.	P2P	NP	0.246	0.140	1.62	6.90	8.34	26.21
		NT	0.248	0.130	1.34	6.07	8.41	27.03
		StyleD	0.248	0.085	1.17	6.61	8.34	26.05
		NMG	0.249	0.087	1.32	5.59	8.47	27.05
		PnP Inv	0.250	0.095	1.17	5.46	8.48	27.22
		h-Edit-D	0.253	0.147	1.17	4.85	8.54	27.87
Random	None	EF	0.254	0.122	1.29	6.09	8.37	25.87
		LEDITS++	0.254	0.113	$\overline{2.34}$	8.88	8.11	23.36
		h-Edit-R	0.255	0.148	1.28	5.55	8.46	26.43
	P2P	EF	0.255	0.126	1.51	5.70	8.40	26.30
		h-Edit-R	0.256	0.159	1.45	5.08	8.50	26.97

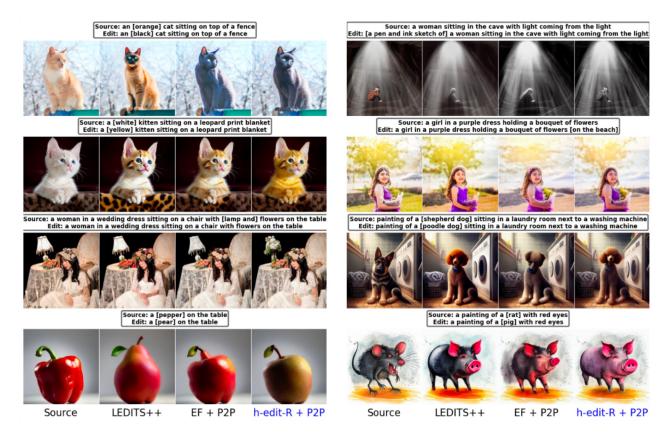
Better editing fidelity!

Better faithfulness!

Comparison with baselines: Deterministic Inversion



Comparison with baselines: Random Inversion

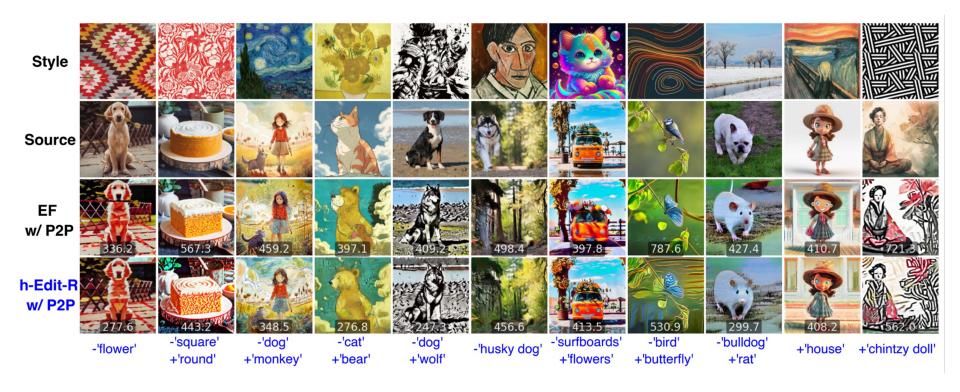


Editing with external reward models

We can perform editing with gradients from external reward models trained on x_0

Editing with reward models: Face Swapping with ArcFace

Editing with conditional score and reward models: Text-guided and Style Editing with CLIP



THANKYOUFOR LISTENING

Our paper: https://arxiv.org/abs/2503.02187
Source code: https://github.com/nktoan/h-edit