

Human-centered Interactive Learning via MLLMs for Text-to-Image Person Re-identification

Yang Qin, Chao Chen, Zhihang Fu, Dezhong Peng, Xi Peng, Peng Hu* College of Computer Science, Sichuan University

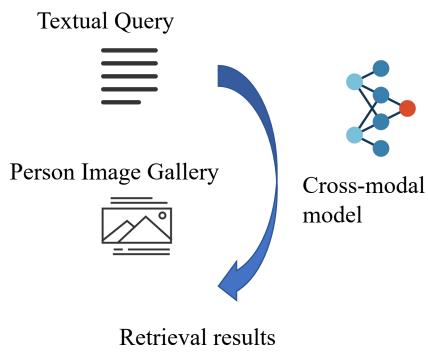
GitHub: https://github.com/QinYang79/ICL

Background

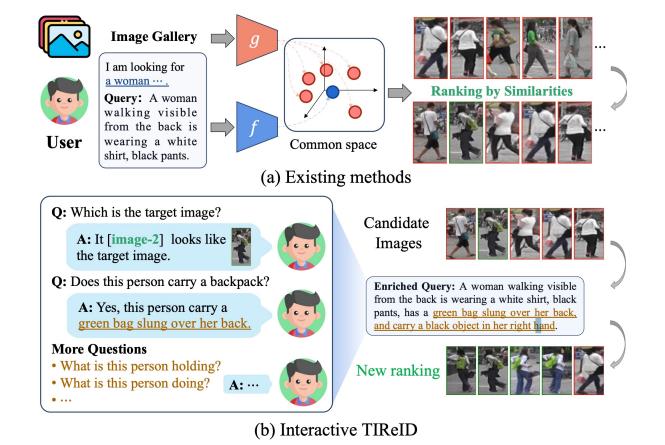
Basical definition for Text-to-Image Person Re-identification (TIReID)

(a) A woman walking visible from the back is wearing a white shirt, black pants and has a green bag slung over her back and carrying a black object in her right hand.

(b) The pedestrian with long, dark hair carries a backpack. She wears a loose top, denim bottoms, and sandals.



Observation



- Offline model
- Knowledge limitations

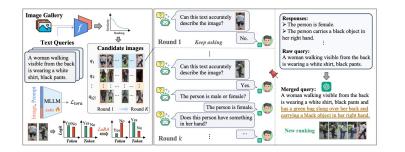
Difficulty distinguishing challenging candidate images

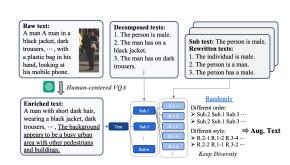
- Transfer external knowledge of MLLM into offline models;
- Empower existing methods to handle dynamic queries

Method

To overcome intrinsic limitations, we propose an Interactive Cross-modal Learning framework (ICL), which leverages human-centered interaction to enhance the discriminability of text queries through external multimodal knowledge. ICL consists of two core components

- Test-time Humane-centered Interaction (THI): THI performs visual question answering focus ed on human characteristics, facilitating multi-round inter-actions with a multimodal large language model (MLLM) to align query intent with latent target images.
- **Reorganization Data Augmentation (RDA):** RDA is proposed based on information enrichment and diversity enhancement to enhance query discrimen-ability by enriching, decomposing, and reorganizing text descriptions.





Method-THI

Steps:

1. Anchor localization

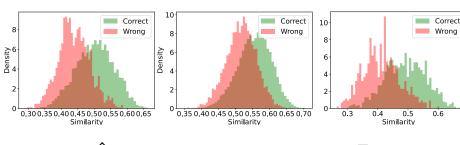
$$a_{\hat{v}_k}^q = \mathcal{M}(\mathcal{T}_{\text{loc}}(q, \hat{v}_k))$$

2. Human-centered VQA

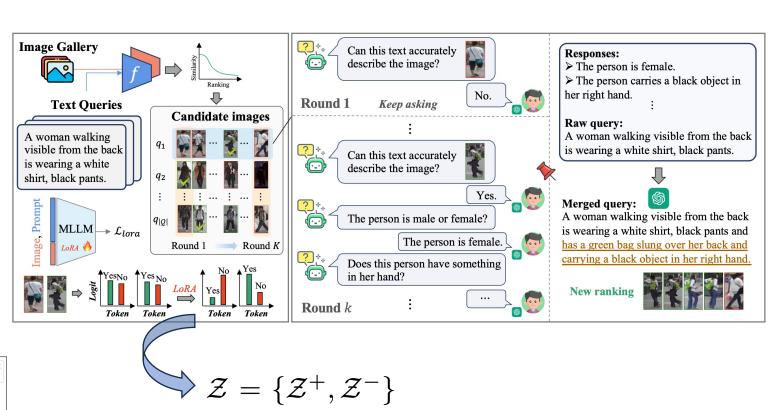
$$r_{ar{v}} = \mathcal{M}(\mathcal{T}_{ ext{vqa}}(\{c_i\}_{i=1}^{N_q}, ar{v}))$$

$$\hat{q} = \mathcal{M}(\mathcal{T}_{ ext{aggr}}(r_{ar{v}},q))$$

3. Efficient re-ranking



$$\hat{S}_{q,v} = \lambda S_{q,v} + (1 - \lambda)\bar{S}_{\hat{q},v}$$



 $\mathcal{L}_{lora} = -\sum_{t} \sum_{t=0}^{\infty} \log(p_{\mathcal{M}}(y_t|x,y < t))$

Method-THI

Algorithm 1 The interaction process of our THI

```
Input: The query set Q, the image gallery V, the offline
    model f_{\rm cross}, the MLLM \mathcal{M}, the similarity threshold \xi,
    the number of interaction rounds K;
 1: Obtain candidate sets \{\hat{\mathcal{V}}(q_i)\}_{i=1}^{|\mathcal{Q}|} for all queries in \mathcal{Q}
    via Equation (1);
 2: for k = 1, 2, \dots, K do
       for i=1,2,\cdots,|\mathcal{Q}| do
          Conduct anchor localization via Equation (2) and
          output the answer of a_{\hat{v}^i}^{q_i} based on the k-th candi-
          date image \hat{v}_k^i in \hat{\mathcal{V}}(q_i);
          if a_{\hat{v}_i^i}^{q_i} shows 'Yes', k=1, and S_{q_i,\hat{v}_i^i} > \xi then
 5:
             Conduct human-centered VOA via Equa-
 6:
             tions (4) and (5) to get the refined query \hat{q}_i;
             Compute the re-ranking similarities between
 7:
          query q_i and all images via Equation (6);
          end if
 8:
          if \{a_{\hat{v}_i^i}^{q_i}\}_{j=1}^{k-1} all show 'No', a_{\hat{v}_i^i}^{q_i} shows 'Yes', k>
          1, and S_{a_i,\hat{v}_i^i} \leq \xi then
            Conduct human-centered VQA via Equa-
10:
            tions (4) and (5) to get the refined query \hat{q}_i;
            Compute the re-ranking similarities between
11:
            query q_i and all images via Equation (6);
          end if
12:
       end for
13:
14: end for
15: Re-ranking based on similarities;
```

Output: The new candidate images.

Steps:

- **Anchor localization**
- **Human-centered VQA**
- **Efficient re-ranking**

Method-RDA

Raw text:

A man A man in a black jacket, dark trousers, ..., with a plastic bag in his hand, looking at his mobile phone.

Decomposed texts:

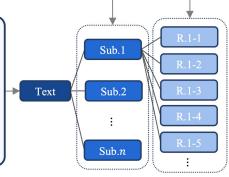
- 1. The person is male.
- 2. The man has on a black jacket.
- 3. The man has on dark trousers.

Sub text: The person is male. **Rewritten texts:**

- 1. The individual is male.
- 2. The person is a man.
- 3. The person has a male.

Enriched text:

A man with short dark hair, wearing a black jacket, dark trousers, ..., The background appears to be a busy urban area with other pedestrians and buildings.



Randomly

Different order:

- ➤ Sub.2 Sub.1 Sub.3 ···
- ➤ Sub.2 Sub.1 Sub.3 ···

Different style:

⇒ Aug. Text

- ➤ R.2-1 R.1-2 R.3-4 ···
- ➤ R.2-2 R.1-1 R.3-2 ···

Keep Diversity

Steps:

- Enrich text via VQA
- Text decomposition
- **Diversity rewriting**
- **Random recombination**

$$\left(\mathcal{L}_{m} = \sum_{i=1}^{K} \hat{l}_{q_{i},v_{i}} \left(\mathcal{L}^{b}(v_{i}, q_{i}) + \mathcal{L}^{t}(v_{i}, q_{i}) \right) \right)$$

$$\mathcal{L}_{a} = \sum_{i=1}^{K} \hat{l}_{\check{q}_{i},v_{i}} \left(\mathcal{L}^{b}(v_{i}, \check{q}_{i}) + \mathcal{L}^{t}(v_{i}, \check{q}_{i}) \right)$$

$$\mathcal{L} = \mathcal{L}_{m} + \gamma \mathcal{L}_{a}$$

Datasets

The CHUK-PEDES, ICFG-PEDES, and RSTPReid, and UFine6926 datasets

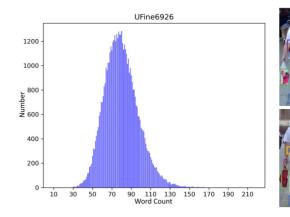
Coarse-grained

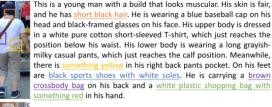
fine-grained

Evaluation Protocols

Rank-K metrics (K=1,5,10) and the mean Average Precision (mAP) and mean Inverse Negative Penalty (mINP)

Baselines: IRRA, RDE (SOTA in 2023, 2024), and so on





This is a mature male with a tall and sturdy physique. His exposed skin is white and smooth. He has short, white hair that is roughly at ear level. He is wearing a white short-sleeved shirt on his upper body. He is holding a red bag in his left hand, and a black briefcase is slung diagonally over his right shoulder. A black leather belt is worn around his waist. His lower body is wearing a pair of long, light khaki-colored casual pants, with the length reaching the heel of his feet. The man is wearing a pair of black casual shoes on his feet.

The fine-grained dataset UFine6926

Comparison with **State-of-the-Arts**

			CUHK-PEDES				ICFG-PEDES				RSTPReid						
Methods	Image Enc.	Text Enc.	Rank-1	Rank-5	Rank-10	mAP	mINP	Rank-1	Rank-5	Rank-10	mAP	mINP	Rank-1	Rank-5	Rank-10	mAP	mINP
1 VL-Backb	VL-Backbones w/o ReID-domain pre-training																
IVT [26]	ViT-Base	BERT	65.69	85.93	91.15	60.66	-	56.04	73.60	80.22	-	-	46.70	70.00	78.80	-	-
LCR ² S [36]	RN50	BERT	67.36	84.19	89.62	59.20	-	57.93	76.08	82.40	38.21	-	54.95	76.65	84.70	40.92	-
CFine [37]	CLIP-ViT	BERT	69.57	85.93	91.15	-	-	60.83	76.55	82.42	-	-	50.55	72.50	81.60	-	-
RaSa [1]	Swin-B	BERT	76.51	90.29	94.25	69.38	-	65.28	80.40	85.12	41.29	-	66.90	86.50	91.35	52.31	-
IRRA [12]	CLIP-ViT	CLIP-X.	73.38	89.93	93.71	66.13	50.24	63.46	80.25	85.82	38.06	7.93	60.20	81.30	88.20	47.17	25.28
TBPS [3]	CLIP-ViT	CLIP-X.	73.54	88.19	92.35	65.38	49.25	65.05	80.34	85.47	39.83	7.87	62.10	81.90	87.75	48.00	25.86
CFAM [44]	CLIP-ViT	CLIP-X.	75.60	90.53	94.36	67.27	-	65.38	81.17	86.35	39.42	-	62.45	83.55	91.10	49.50	-
RDE [21]	CLIP-ViT	CLIP-X.	75.94	90.14	94.12	67.56	51.44	67.68	82.47	87.36	40.06	7.87	65.35	83.95	89.90	50.88	28.08
Our ICL	CLIP-ViT	CLIP-X.	76.41	90.48	94.33	68.04	51.99	68.11	82.59	87.52	40.81	8.18	67.70	86.05	91.75	52.62	29.36
Our ICL*	CLIP-ViT	CLIP-X.	77.91	90.27	94.14	69.13	53.40	69.02	82.45	87.36	41.21	8.30	70.55	85.95	91.65	53.68	30.13
VL-Backb	ones with Re	eID-domai	n pre-tre	aining													
IRRA [♭] [12]	CLIP-ViT	CLIP-X.	74.05	89.48	93.64	66.57	-	64.37	80.75	86.12	38.85	-	61.90	80.60	89.30	48.08	-
APTM [38]	Swin-B	BERT	76.53	90.04	94.15	66.91	-	68.51	82.99	87.56	41.22	-	67.50	85.70	91.45	52.56	-
NAM [‡] [28]	CLIP-ViT	CLIP-X.	77.47	90.84	94.67	69.43	54.08	66.76	82.02	87.17	41.45	9.53	67.15	86.55	91.90	52.00	28.46
Our ICL	CLIP-ViT	CLIP-X.	78.18	91.63	94.83	69.58	53.48	69.22	83.49	88.06	42.34	9.01	70.00	86.60	91.70	54.16	30.93
Our ICL*	CLIP-ViT	CLIP-X.	79.06	91.26	94.72	70.44	54.70	70.05	83.35	87.91	42.70	9.13	72.55	86.60	91.30	55.19	31.72

Table 1. Performance on the three coarse-grained benchmarks. The results with THI are marked with \star . Note that IRRA means using the pre-trained Backbones with MALS [38] and the results of NAM are reproduced by us.

In group 1, the Rank-1 scores on the three datasets are improved by 1.50%, 0.91%, and 2.85%, respectively. In addition, mAP and mINP scores have also improved greatly, which indicates that the overall ranking has improved.

In group 2, our method achieves the best scores on most metrics, especially Rank-1 reached 72.55% on RSTPReid, which is sufficient to verify the superiority.

Methods	Rank-1	Rank-5	Rank-10	mAP	mINP
LGUR [25]	70.69	84.57	89.91	68.93	-
SSAN [5]	75.09	88.63	92.84	73.14	-
IRRA [12]	85.02	94.31	96.75	83.91	77.30
RDE [21]	87.60	95.65	97.46	86.10	79.54
CFAM(B/16) [44]	85.55	94.51	97.02	84.23	-
CFAM(L/14) [44]	88.51	95.58	97.49	87.09	-
0 Our ICL	89.17	96.13	97.88	87.49	81.50
○ Our ICL *	90.67	95.98	97.86	88.29	82.60
Our ICL	91.02	96.98	98.17	89.76	84.70
2 Our ICL*	91.78	96.83	98.16	90.33	85.62

Table 2. Performance comparison on the UFine6926 dataset. The results of IRRA and RDE are reproduced by us.

Text length is over 80

Our method can still achieve excellent performance, with Rank-1 exceeding 91%. This shows that interaction is also applicable to the fine-grained scenario.

	CUHK-PEDES					ICFG-PEDES				RSTPReid						
Methods	Training Sets	Rank-1	Rank-5	Rank-10	mAP	mINP	Rank-1	Rank-5	Rank-10	mAP	mINP	Rank-1	Rank-5	Rank-10	mAP	mINP
IRRA [12]	CUHK-PEDES	73.38	89.93	93.71	66.13	50.24	42.41	62.11	69.62	21.77	1.95	53.25	77.15	85.35	39.63	16.60
	ICFG-PEDES	33.48	56.29	66.33	31.56	19.20	63.46	80.25	85.82	38.06	7.93	45.30	69.25	78.80	36.82	18.38
	RSTPReid	32.80	55.26	65.81	30.29	17.61	32.30	49.67	57.80	20.54	3.84	60.20	81.30	88.20	47.17	25.28
	CUHK-PEDES	75.94	90.14	94.12	67.56	51.44	48.18	66.30	73.70	25.00	2.33	54.90	77.50	86.50	41.27	17.84
RDE [21]	ICFG-PEDES	38.11	59.24	68.44	34.16	20.44	67.68	82.47	87.36	40.06	7.87	49.25	72.10	80.20	38.46	18.33
	RSTPReid	36.94	58.22	67.58	33.65	20.42	42.17	58.32	65.49	26.37	4.94	65.35	83.95	89.90	50.88	28.08
	CUHK-PEDES	76.41	90.48	94.33	68.04	51.99	48.57	66.66	73.75	25.30	2.40	55.80	79.60	87.65	42.09	17.41
Our ICL	ICFG-PEDES	42.87	64.20	73.44	38.19	23.58	68.11	82.59	87.52	40.81	8.18	52.50	75.05	83.00	41.82	21.14
	RSTPReid	41.31	61.86	70.31	36.78	22.37	45.93	62.70	68.80	28.89	5.63	67.70	86.05	91.75	52.62	29.36
	CUHK-PEDES	77.91	90.27	94.14	69.13	53.40	52.80	66.49	73.49	25.60	2.44	61.30	79.25	87.40	43.42	18.01
Our ICL*	ICFG-PEDES	49.29	64.34	73.55	40.82	25.38	69.02	82.45	87.36	41.21	8.30	60.15	75.30	83.15	43.72	22.04
	RSTPReid	47.35	61.45	70.34	38.91	23.68	50.52	61.56	68.57	29.26	5.73	70.55	85.95	91.65	53.68	30.13

Table 3. Comparison of mutual generalization capabilities between coarse-grained datasets.

When THI is performed, the cross-domain performance is dramatically improved, for example, from CUHK-PEDES to RSTPReid, THI brings an improvement of more than 4% on Rank-1.

Source \rightarrow Target	Methods	Rank-1	Rank-5	Rank-10	mAP	mINP
	IRRA [12]	37.51	54.92	64.29	40.76	34.33
CHILL ME	RDE [21]	40.37	57.49	66.05	42.68	35.78
CUHK. \rightarrow UFine.	Our ICL	46.40	63.55	72.08	48.68	41.56
	Our ICL*	57.76	64.13	72.81	53.97	45.64
	IRRA [12]	15.02	26.79	33.90	17.10	12.75
ICEC \ LIEina	RDE [21]	17.86	31.01	38.56	19.82	14.74
ICFG. \rightarrow UFine.	Our ICL	27.95	44.20	52.20	29.85	23.20
	Our ICL*	36.81	44.65	52.73	34.12	26.61
	IRRA [12]	13.21	25.67	33.93	15.60	11.09
RSTP. \rightarrow UFine.	RDE [21]	14.00	25.23	32.64	16.22	11.90
$KSIP. \rightarrow UFIIIe.$	Our ICL	23.89	38.30	46.70	25.54	19.20
	Our ICL*	31.23	38.56	47.02	28.90	21.80
	IRRA [12]	37.74	60.12	70.13	35.94	23.21
UFine. \rightarrow CUHK	RDE [21]	39.41	61.14	70.11	36.49	23.32
Urille. → CURK	Our ICL	49.04	70.27	78.64	44.54	29.58
	Our ICL*	56.87	70.19	78.53	47.31	31.20
	IRRA [12]	34.52	55.41	64.44	17.96	1.95
UFine. \rightarrow ICFG.	RDE [21]	40.37	60.14	68.41	20.54	2.19
$0 \cap \mathbb{R} \longrightarrow \mathbb{R} \cap \mathbb{R}$	Our ICL	43.10	62.92	70.73	22.73	2.56
	Our ICL*	47.83	62.67	70.48	23.16	2.62
	IRRA [12]	37.65	63.70	73.00	29.00	11.80
UFine. \rightarrow RSTP.	RDE [21]	39.90	63.50	74.75	29.92	12.43
Offlie. \rightarrow KS1P.	Our ICL	48.85	72.65	81.80	36.91	16.39
	Our ICL*	55.35	72.40	81.50	38.64	17.23

Table 4. Generalization capabilities between coarse-grained and fine-grained datasets. The best scores in each task are in **bold**.

From the generalization experiments, ICL can also achieve the best cross-domain performance, *e.g.*, compared with the best baseline RDE, from UFine6926 domain to CUHK-PEDES domain, our method improves Rank-1 and mAP by 17.49% and 10.86%, respectively, which further verifies the crossdomain generalization of our ICL.

		CUHK-	PEDES	ICFG-P	EDES	RSTP		
Methods	THI	Rank-1	mAP	Rank-1	mAP	Rank-1	mAP	ΔAvg
CLIP [24]	X	71.64	63.92	60.11	34.52	56.55	44.52	+2.57
	~	73.77	65.66	63.57	34.95	61.45	46.25	+2.57
IDD A [12]	X	73.38	66.13	63.46	38.06	60.20	47.17	+1.86
IRRA [12]	/	76.06	67.42	65.26	38.58	63.75	48.47	+1.00
DDE [21]	X	75.94	67.56	67.68	40.06	65.35	50.88	+1.41
RDE [21]	/	77.47	68.62	68.72	40.63	68.45	52.01	+1.41

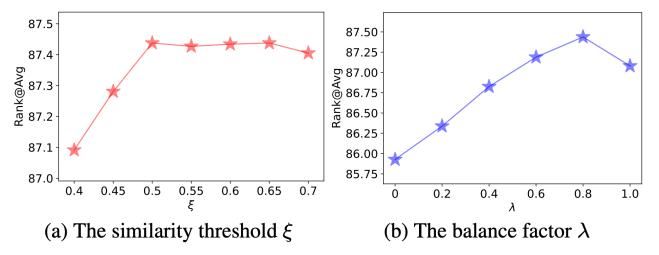
Table 5. Transferability results on three coarse-grained benchmarks. Δ Avg represents the average improvement.

The interactive strategy application can significantly improve Rank-1 and mAP, which shows that the external guidance by interactions via MLLMs can further clarify the text-image alignments and improve the overall ranking.

				CUHK-	PEDES	ICFG-P	EDES	RSTPReid		
No.	THI	RDA	LoRA	Rank-1	mAP	Rank-1	mAP	Rank-1	mAP	
	1			77.91		1		1		
#2	/	/	×	76.38	68.59	67.92	41.13	69.00	53.11	
#3	X	/	×	76.41	68.04	68.11	40.81	67.70	52.62	
#4	X	X	X	75.94	67.56	67.68	40.06	65.35	50.88	

Each module is valid

Table 6. Ablation studies on CHUK-PEDES, ICFG-PEDES, and RSTPReid datasets. The best scores are in **bold**.



Set ξ in the range of $0.5 \sim 0.6$ and λ to 0.8

Figure 5. Variation of performance with different ξ and λ .

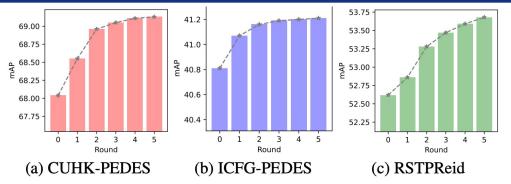


Figure 6. Performance (mAP) versus rounds on three datasets. Round 0 indicates the setting without using THI.

Figure 7. Top-10 retrieved results on CUHK-PEDES dataset between ICL (the first row) and ICL with THI (the second row).

As the interaction progresses, mAP continues to improve.

Through interaction, more details can be obtained.

Conclusion

- In this paper, we explore interactive text-to-image person re-identification, which aims to improve the alignment between dynamic queries and challenging candidate images by leveraging external guidance from MLLMs.
- To achieve this, we develop an Interactive Cross-modal Learning (ICL) framework to alleviate the inherent challenges of offline models and training data by, including a plug-and-play Testtime Human-centered Interaction (THI) module and Reorganization Data Augmentation (RDA).
- Extensive experiments and analysis show that our framework can effectively transfer external knowledge in MLLMs into offline models for guiding reidentification, showing excellent performance and generalization.

Thanks for your attention!

College of Computer Science Sichuan University