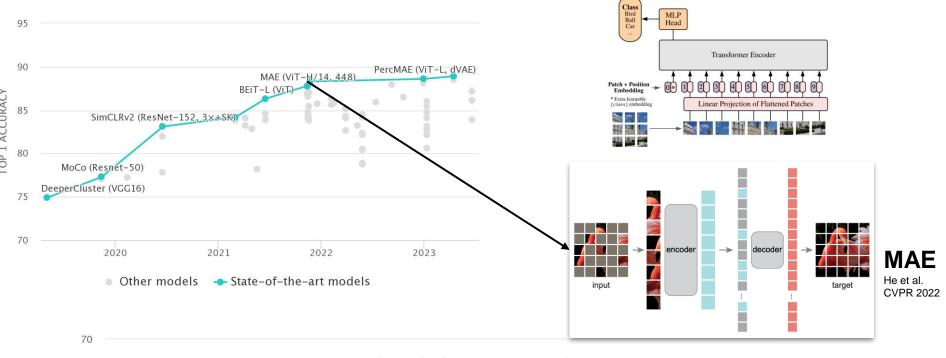
Multi-Modal Contrastive Masked Autoencoders: A Two-Stage Progressive Pretraining Approach for RGBD Datasets

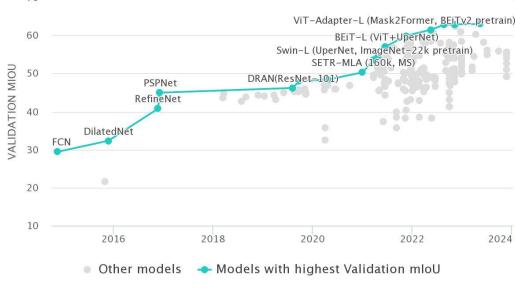
Muhammad Abdullah Jamal, Omid Mohareri

Remarkable success of Vision Transformers (ViT) in computer vision tasks

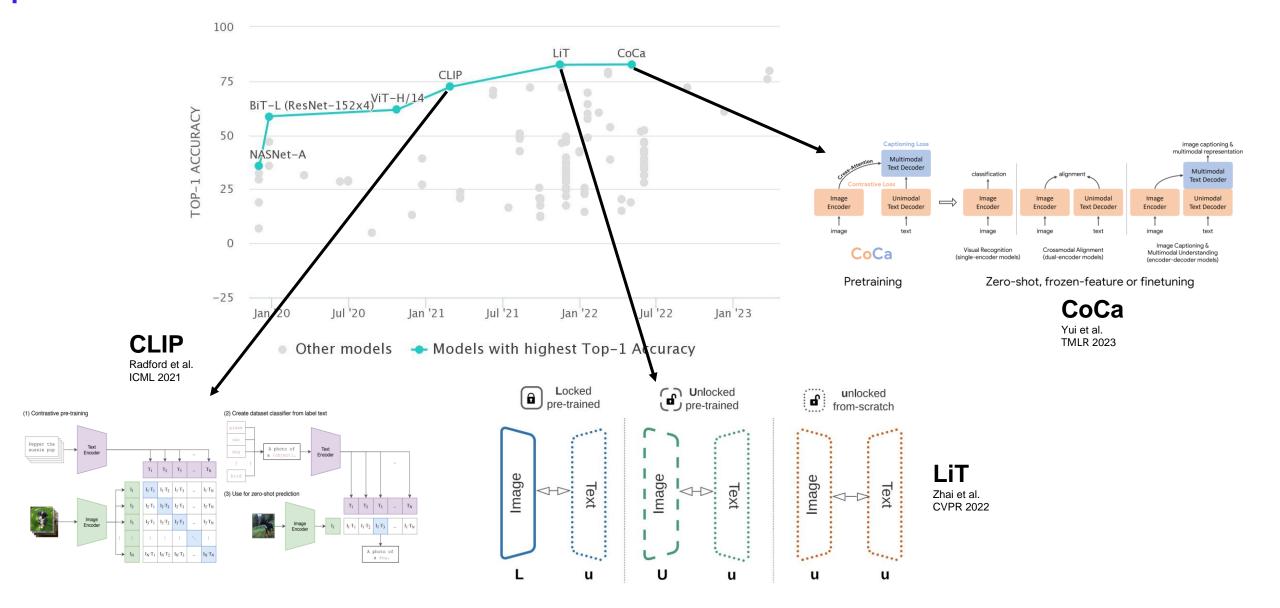


Vision Transformer (ViT)

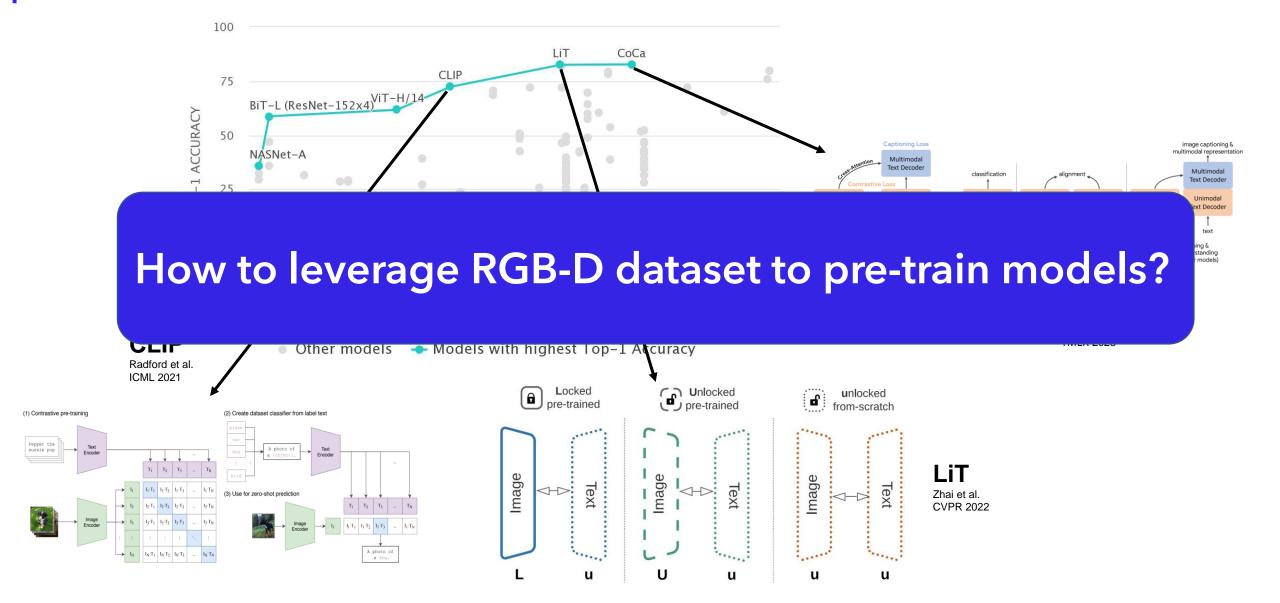
ADE-20k Semantic Segmentation



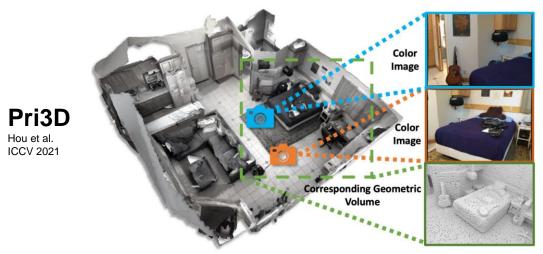
Large scale Multi-modal Foundation models improves the performance of various downstream tasks

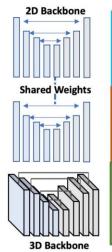


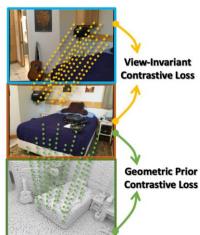
Large scale Multi-modal Foundation models improves the performance of various downstream tasks



Contrastive Learning for RGB-D dataset

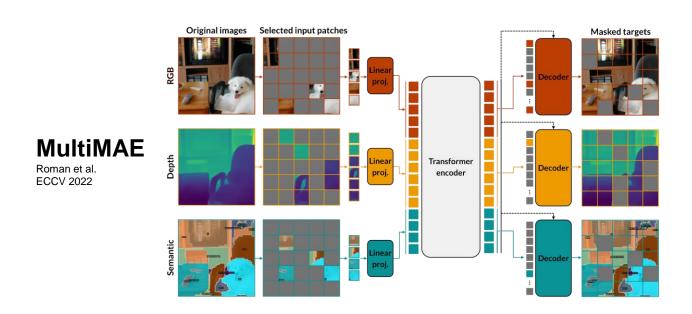






- Embed 3D priors using 2D-3D correspondence
- Multi-view input
- Requires camera pose registration
- Doesn't capture discriminative features beyond mere cross-model correspondence

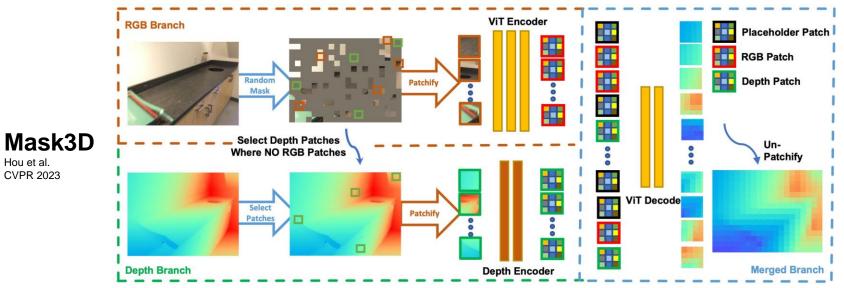
Masked Autoencoding pre-training for RGB-D



Hou et al.

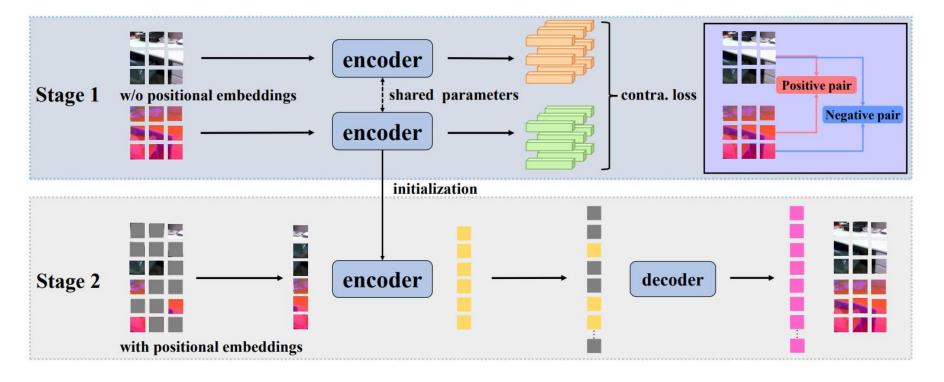
CVPR 2023

- Requires segmentation labels during pre-training
- Relies on multi-modal data during finetuning.
- Cross-attention model for cross-modal prediction



- Limited to 2D image understanding tasks
- Relies on MAE pre-training for any cross-modal representation learning.

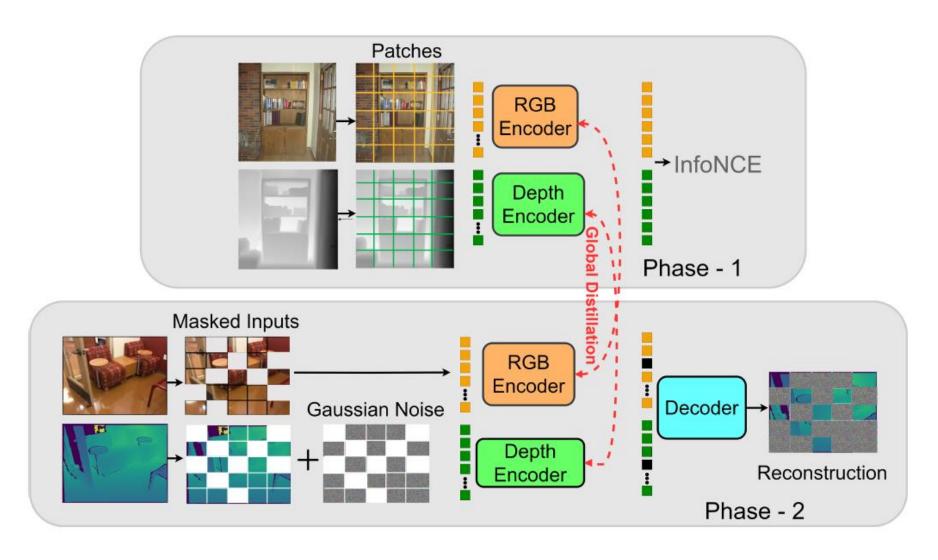
Contrastive and Masked Autoencoding pre-training for RGB-D



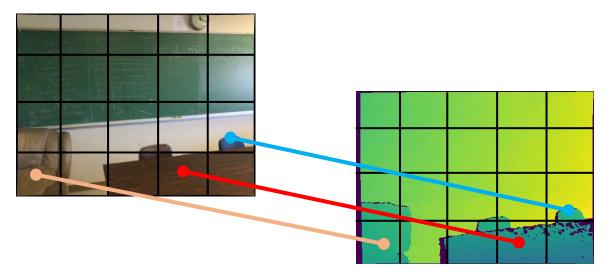
- Small-scale RGB-D datasets
- Requires both RGB and depth data during finetuning and evaluation
- Fails to distill features learned in stage-1

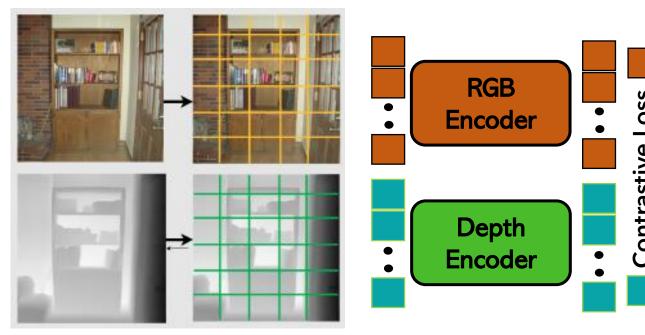
- All these approaches frequently struggle to capture highfrequency components of the data. Can denoising inspired from diffusion models encourage the model to extract high-frequency features?
- A pre-training approach that combines powerful selfsupervised learning methods for pre-training RGB-D?
 - Requires both RGB and depth data during finetuning and evaluation
 - Fails to distill features learned in stage-1

Two-stage progressive pre-training



Stage -1: Cross-Modal Representation Learning

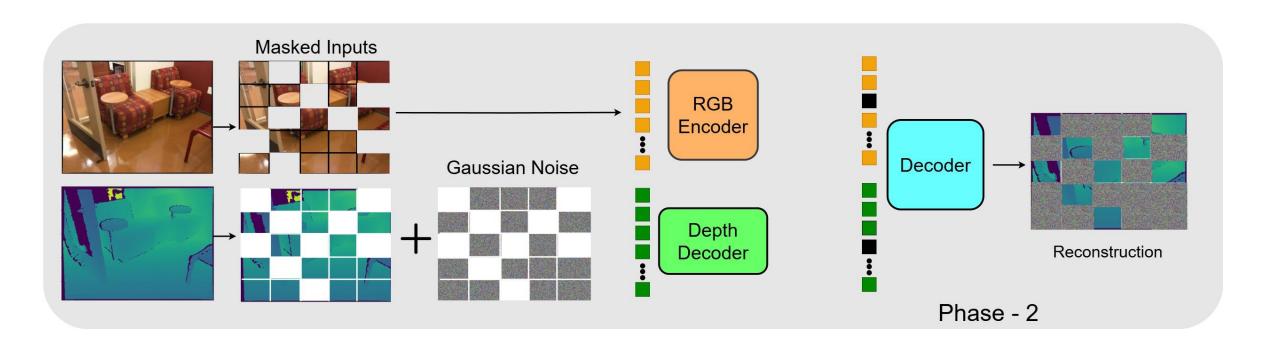




RGB-Depth patch level correspondence

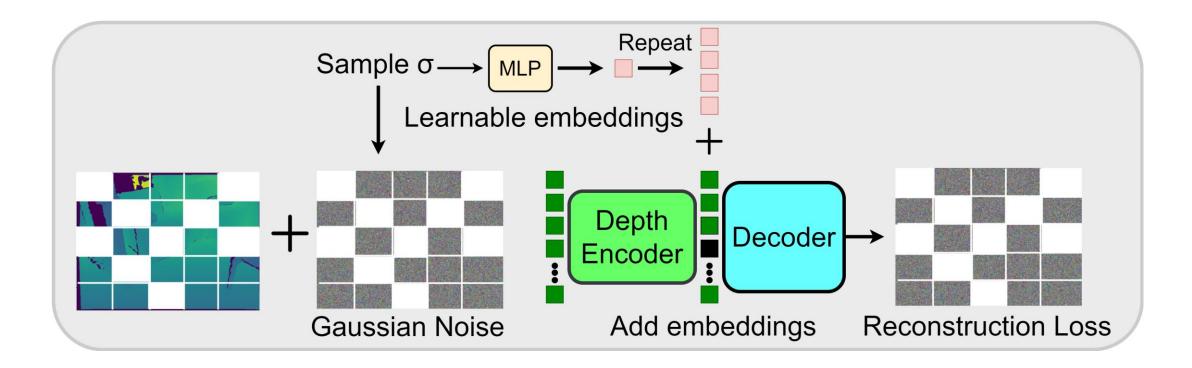
RGB-Depth patch level correspondence
$$\mathcal{L}_{c} = -\frac{1}{N} \sum_{i=1}^{N} \log \left[\frac{\exp(s_{i,i}/\tau)}{\sum_{k \neq i} \exp(s_{i,k}/\tau) + \exp(s_{i,i}/\tau)} \right]$$

Stage-2: Multi-Modal Masked Autoencoding



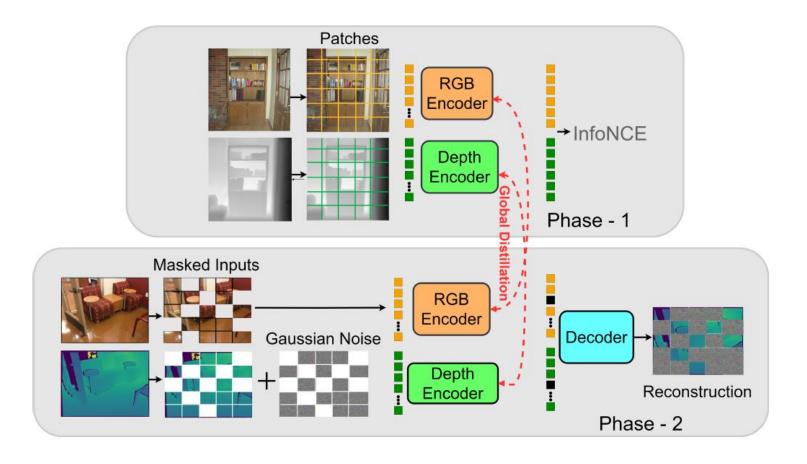
$$\mathcal{L}_{\text{depth}} = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{M}_{i}^{depth} \circ (\mathbf{x}_{i}^{depth} - \hat{\mathbf{x}}_{i}^{depth})\|_{2}^{2}$$

Denoising



$$\mathcal{L}_{\text{denoise}} = \frac{1}{n} \sum_{i=1}^{n} \| (1 - \mathbf{M}_{i}^{depth}) \circ (\sigma_{i}^{depth} \mathbf{e}_{i}^{depth} - \hat{\mathbf{x}}_{i}^{depth}) \|_{2}^{2}$$

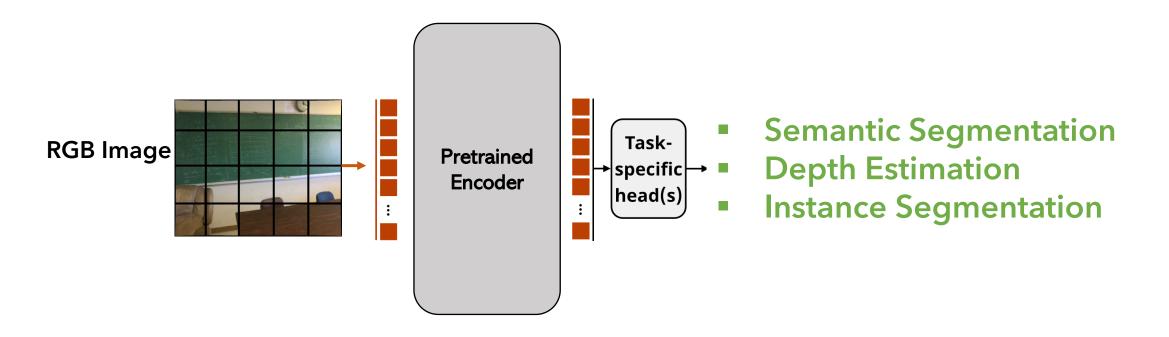
Feature distillation



$$\mathcal{L}_{\mathrm{distill}}(\mathbf{f_2},\mathbf{f_1}) = \begin{cases} \frac{1}{2}(\mathbf{f_2} - \mathbf{f_1})^2/\beta, & |\mathbf{f_2} - \mathbf{f_1}| \leq \beta \\ (|\mathbf{f_2} - \mathbf{f_1}| - \frac{1}{2}\beta), & \text{otherwise} \end{cases},$$

Transfer from Our approach

Flexibly transfer using RGB modality for multiple downstream tasks



Semantic Segmentation on ScanNet

Methods	Reconstruction task	Backbone	Pre-train	Fine-tune Modality	mIoU
Scratch	-	ViT-B	None	RGB	32.6
Pri3D [44]		ViT-B	ImageNet+ScanNet	RGB	59.3
Pri3D [44]	-	ResNet-50	ImageNet+ScanNet	RGB	60.2
DINO [12]	-	ViT-B	ImageNet+ScanNet	RGB	58.1
MAE [38]	RGB	ViT-B	ImageNet	RGB	64.8
MAE [38]	RGB	ViT-B	ImageNet+ScanNet	RGB	64.5
MultiMAE* [6]	RGB + Depth	ViT-B	ImageNet+ScanNet	RGB	65.1
Mask3D** [45]	Depth	ViT-B	ImageNet+ScanNet	RGB	66.2
Mask3D [45]	RGB + Depth	ViT-B	ImageNet+ScanNet	RGB	65.5
Ours	Depth	ViT-B	ImageNet+ScanNet	RGB	67.5
MultiMAE [6]	RGB + Depth + Segmentation	ViT-B	ImageNet	RGB	66.4

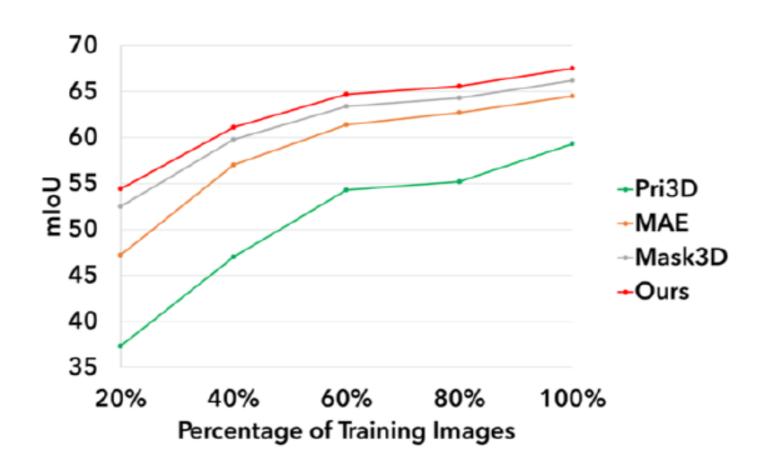
Instance Segmentation on ScanNet

Methods	Pre-train	AP
Scratch	None	12.2
ImageNet baseline	Supervised ImageNet	17.6
Pri3D [44]	ImageNet + ScanNet	18.3
MoCov2 [86]	ImageNet + ScanNet	18.3
MAE [38]	ImageNet + ScanNet	20.7
MultiMAE [6]	ImageNet + ScanNet	22.4
Mask3D [45]	ImageNet + ScanNet	22.8
Ours	ImageNet + ScanNet	23.7

Depth Estimation on NYUv2

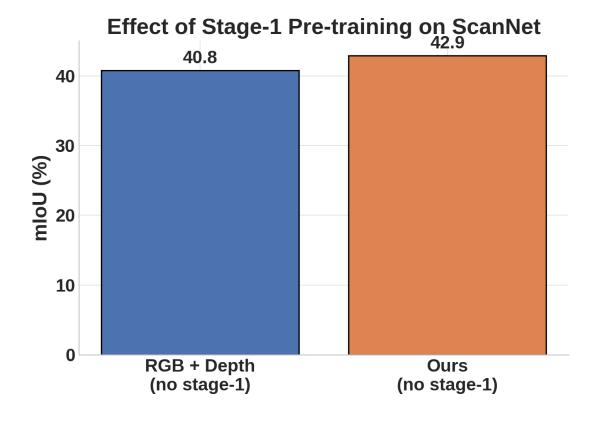
Methods	Reconstruction task	Backbone	Pre-train	Fine-tune Modality	δ_1
MAE [38]	RGB	ViT-B	ImageNet	RGB	85.1
Mask3D [45]	Depth	ViT-B	ImageNet+ScanNet	RGB	85.4
CroCo [80]	RGB + Depth	ViT-B	Habitat	RGB	85.6
MultiMAE* [6]	RGB + Depth + Segmentation	ViT-B	ImageNet	RGB	83.0
MultiMAE [6]	RGB + Depth	ViT-B	ImageNet+ScanNet	RGB	85.3
Ours	Depth	ViT-B	ImageNet+ScanNet	RGB	87.1
MultiMAE [6]	RGB + Depth + Segmentation	ViT-B	ImageNet	RGB	86.4

Data-Efficient Learner



Effect of different components

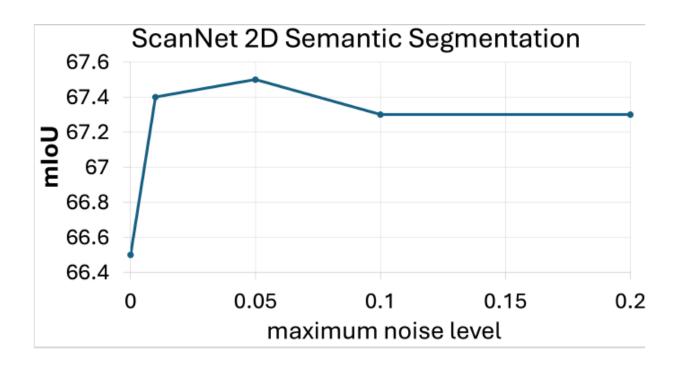
Contrastive	Reconstruction	Denoising	Distill	mIoU
✓	X	Х	X	63.4
✓	✓	X	X	66.3 66.5
✓	✓	×	✓	66.5
✓	✓	✓	×	67.0
✓	✓	✓	✓	67.5



Effect of noise

Method	Backbone	mIoU
w/out noise	ViT-B	66.5
noise only	ViT-B	66.9
Full	ViT-B	67.5

Table 6. Ablation study on the components of the denoising method. We report the performance on **ScanNet 2D semantic segmentation**.



Multi-Modal Contrastive Masked Autoencoders: A Two-Stage Progressive Pre-training Approach for RGBD Datasets

Muhammad Abdullah Jamal, Omid Mohareri

- Simple & effective multi-modal pre-training to integrate strong self-supervised methods
- > Trained without any semantic pseudo labels
- Inspired by diffusion models, integrates denoising to extract high-frequency components.
- Feature distillation to distill knowledge learnt in stage-1
- Notable performance gains on multiple datasets for multiple downstream tasks