

Do Your Best and Get Enough Rest for Continual Learning

Hankyul Kang, Gregor Seifer, Donghyun Lee, Jongbin Ryu

¹Ajou University, ²KAIST

Motivation: Forgetting Curve Theory

- Ebbinghaus's theory says, "human memory tends to fade as time goes on; however, memory retention can be improved by repeated learning in an *optimal recall interval*."
- We apply his theory to neural networks in continual learning scenarios.

		Within February	After 6 months
	Person A	Memorize 10 words every 2 days.	Remembers only 3 words.
	Person B	Memorize 10 words every 4 days.	Remembers 10 words.

Figure 1. **Hermann Ebbinghaus** (1850-1909, German psychologist)

Motivation: Forgetting Curve Theory

- Expanding the recall interval improves long-term memory retention of neural networks by repeatedly recalling memory with moderate difficulty, whereas an excessive recall interval decreases it.
- Long-term recall intervals lead to a high degree of forgetting.

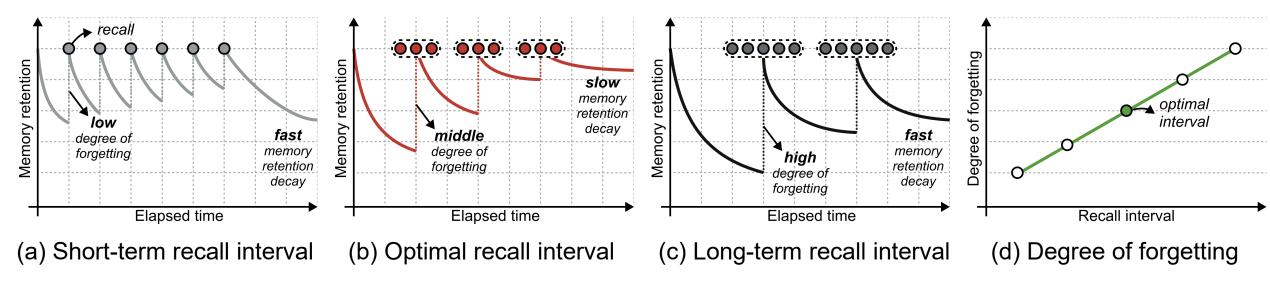


Figure 2. Conceptual Graph of Forgetting Curve.

Method: View Batch Model

- We structure a view-batch to have multiple views of a single sample.
- The *recall interval* of a single sample increases with the view-batch.

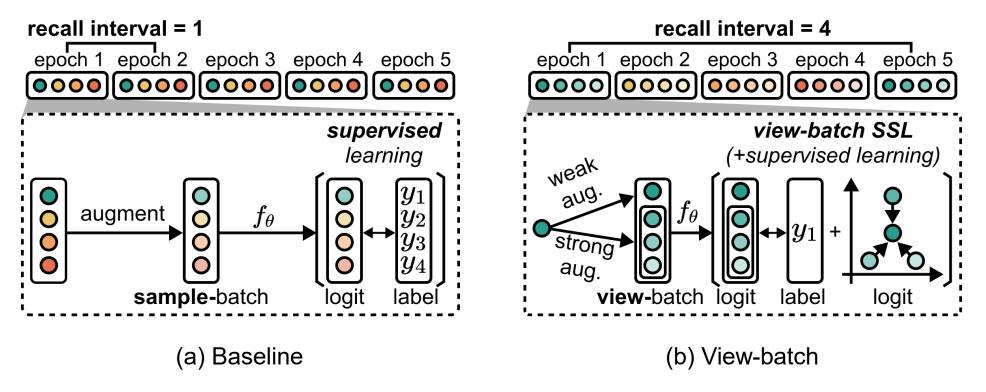


Figure 3. **Schematic illustration of the proposed view-batch model.** (a) trains whole samples (denoted as different colors) per epoch. In contrast to (a), (b) learns multiple views of the same sample (marked as different shades) to ensure enough time-space between recall intervals.

Empirical Findings

- We show that (a) the degree of forgetting increases with recall intervals.
- We demonstrate that x3 achieves (c) the best performance, thanks to (b) the slow memory retention decay.

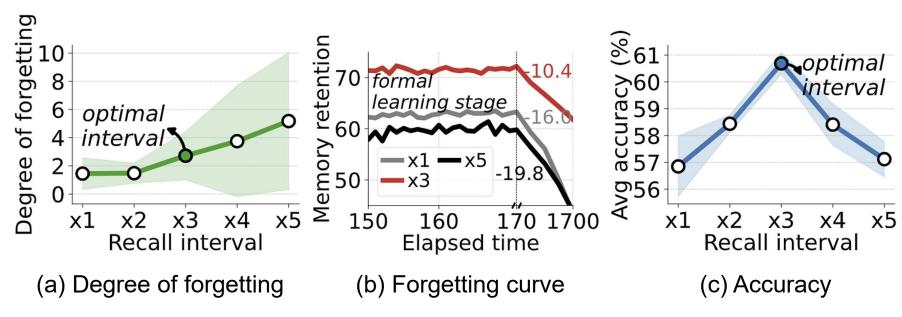


Figure 4. Empirical findings.

Comprehensive benchmark

 We provide comprehensive comparisons of various factors for continual learning. TCIL is used as a baseline method on the CIFAR100 dataset.

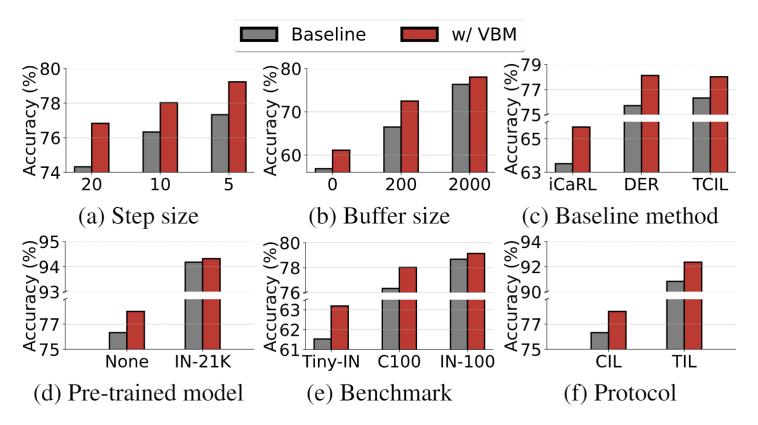


Figure 4. Comprehensive benchmark.

Conclusion

- Contribution: We propose the view-batch model that optimizes the recall interval between retraining samples in order to enhance memory decay in the continual learning task.
- Benefits: We showcase *the effectiveness of our approach on various state-of-the-art continual learning methods*, where ours consistently improves the performance.
- Drawbacks: We limit the experimental scope to the continual learning tasks.