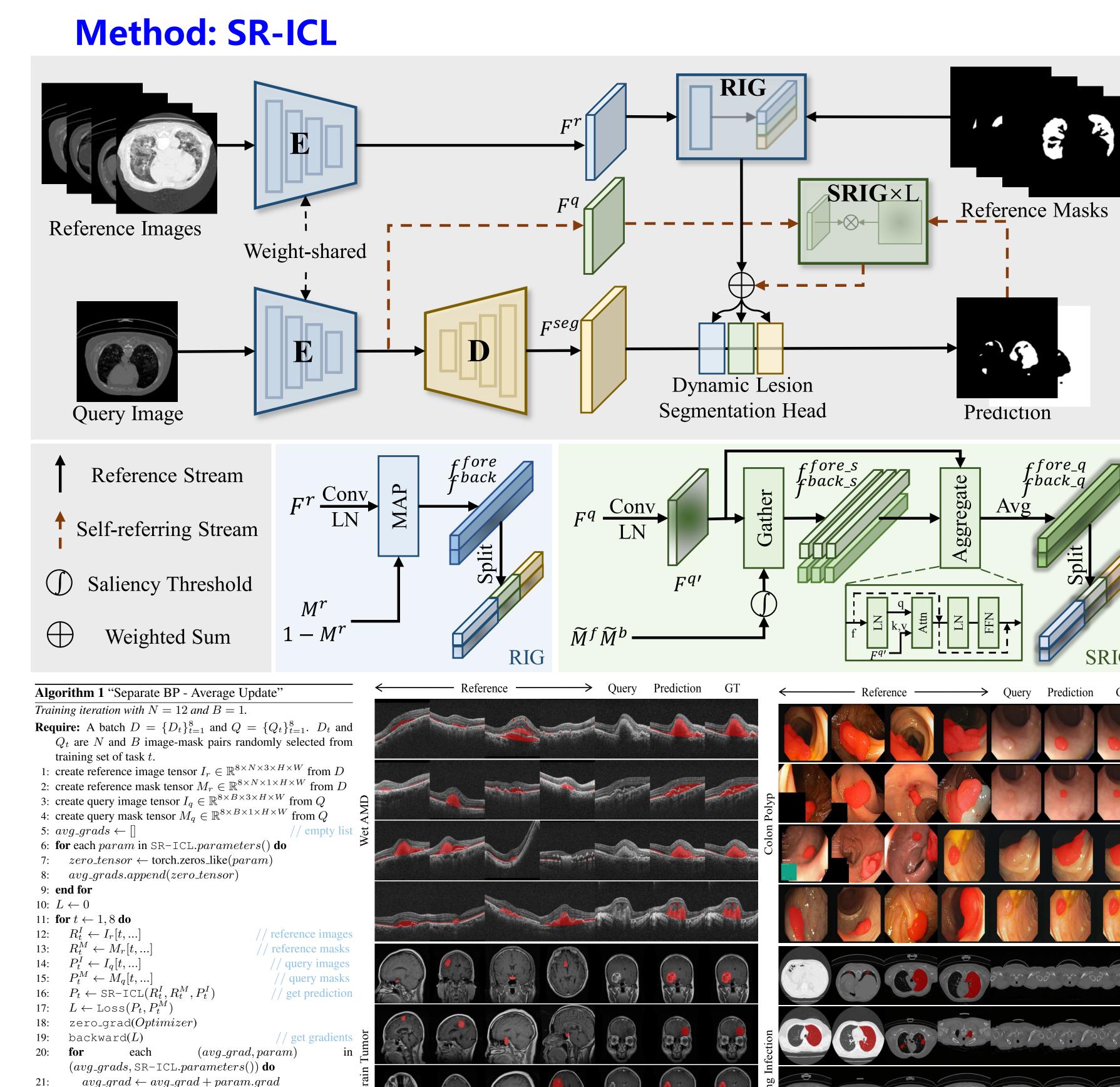


Unified Medical Lesion Segmentation via Self-referring Indicator


Shijie Chang, Xiaoqi Zhao, Lihe Zhang*, Tiancheng Wang Dalian University of Technology

Motivation/Contributions

- We propose a self-referring mechanism that adaptively extracts information from the query itself to overcome the negative impact caused by low-matched reference sets.
- We design reference indicator generation to efficiently utilize reference information instead of cross-fusion mechanisms which heavily rely on reference sets, facilitating the self-referring mechanism.
- ➤ Our designs successfully apply ICL to unified MLS. SR-ICL has impressive performance even with weak reference annotations such as boxes and points. Furthermore, it has relatively low memory requirements during training.

 $(SR-ICL.parameters(), avg_grads)$ do

25: $param.grad \leftarrow \left(\frac{avg_grad}{8}\right)$

27: step(Optimizer)

Results:

Methods	Methods	Wet a	AMD mIoU	Brain Dice	Tumor mIoU	Adenoc Dice	carcinoma mIoU	Thyroid Dice	d Nodule mIoU	Po Dice	lyp mIoU	Lung In	nfection mIoU	Breast Dice	Lesion mIoU	Skin Dice	Lesion mIoU
Specialized Models (One model for one task)																	
TRSRD-Net [2]	ICISN24	_	_	_	_	_	-	85.40	84.65	_	_	_	-	-	_	_	-
LDNet [57]	MICCAI22	_	-	_	-	-	-	_	-	64.25	74.41	_	-	-	-	-	-
WeakPolyp [52]	MICCAI23	_	-	_	-	-	-	_	-	74.90	80.66	_	-	-	-	-	-
Inf-Net [16]	TMI20	_	-	_	-	-	-	_	-	_	-	43.24	52.85	_	-	_	-
DECOR-Net [19]	ISBI23	_	-	_	-	_	-	_	-	_	-	40.25	69.49	_	-	_	-
AAU-Net [8]	TMI22	_	-	_	-	_	-	_	-	_	-	_	-	47.45	65.15	_	-
CMU-Net [44]	ISBI23	_	-	_	-	_	-	_	-	_	-	_	-	54.52	83.02	_	-
MALUNet [36]	BIBM22	_	-	_	-	_	-	_	-	_	-	_	-	_	-	86.32	85.37
EGE-UNet [37]	MICCAI23	_	-	_	-	_	-	_	-	_	-	_	-	_	-	85.88	84.98
UNet [35]	MICCAI15	76.01	80.88	60.44	73.79	91.94	75.33	80.16	83.94	66.29	75.20	54.59	71.10	70.04	75.71	85.93	81.69
TransUNet [9]	MIA24	76.72	81.29	57.92	72.46	91.85	74.23	78.24	82.90	66.41	75.52	43.89	65.33	75.67	80.62	86.40	82.53
RollingUNet [27]	AAAI24	77.13	81.54	61.38	74.71	92.26	75.05	78.96	83.17	69.20	78.33	62.75	76.36	73.84	79.59	87.68	85.04
Generalist Models (One model performs new tasks without fine-tuning)																	
SegGPT [50]	ICCV23	39.42	62.68	24.43	58.61	73.60	61.71	21.33	57.64	60.62	74.05	26.08	58.78	37.79	62.87	29.28	53.62
UniverSeg [5]	CVPR23	45.90	63.66	32.83	61.29	80.85	45.66	60.95	73.63	29.31	53.46	39.98	65.21	65.51	74.16	77.16	76.01
DSC-ICL [18]	TMI24	-	-	_	-	-	-	76.03	-	_	-	_	-	71.88	-	81.51	-
Unified Models (One model for all tasks)																	
UNet [35]	MICCAI15	75.29	80.46	54.95	70.35	91.21	72.66	78.41	82.88	60.31	70.24	47.87	66.66	74.83	79.30	86.88	82.89
TransUNet [9]	MIA24	75.46	80.43	56.59	71.77	90.34	69.16	78.57	83.21	55.81	66.21	36.68	61.62	74.66	79.53	86.14	80.67
RollingUNet [27]	AAAI24	76.46	81.11	60.48	74.43	92.17	71.62	82.26	85.24	62.48	74.53	68.63	79.05	77.58	82.16	87.30	83.92
SegGPT [50]†	ICCV23	71.66	78.64	44.17	67.30	94.24	80.14	79.69	85.18	78.29	84.66	50.10	65.91	78.87	83.87	87.90	85.42
Spider [61]†	ICML24	78.51	82.66	71.59	79.86	93.65	80.30	86.52	88.40	80.66	85.30	73.85	82.07	81.16	84.80	88.79	87.18
Ours	-	80.54	83.84	74.29	81.50	94.96	81.98	87.91	89.18	83.26	86.53	82.36	87.21	84.92	87.08	90.85	87.29
Segmentation Task		Dataset			Modality #Train #Val				Method			Task Number Batchsize Memory					
Wet AMD	AMD-SD [20]				OCT 2346 703 —												

Conclusion

Adenocarcinoma

Thyroid Nodule

Colon Polyp Lung Infection Breast Lesion

> The self-referring mechanism improves the robustness to the reference information.

Balance FP - Unify BP

- > SR-ICL achieves good performance with weak annotations.
- ➤ The training strategy enables SR-ICL to balance any number of datasets even with one single RTX 3090 GPU.

Future Work

- > Dynamic selection of the reference images.
- > Large-scale pre-training on medical data.
- > Extend to 3D medical segmentation dataset.