GraphMimic: Graph-to-Graphs Generative Modeling from Videos for Policy Learning

Guangyan Chen¹, Te Cui¹, Meiling Wang¹, Chengcai Yang¹, Mengxiao Hu¹, Haoyang Lu¹, Yao Mu², Zicai Peng¹, Tianxing Zhou¹, Xinran Jiang¹, Yi Yang¹, Yufeng Yue¹

¹Beijing Institute of Technology, Beijing, P. R. China

²The University of Hong Kong, Hong Kong, P. R. China

Motivation

Current methods:

 Model representations from pixel space directly, neglecting the modeling of important structures

- Graph representations inherently encode spatial relational bias, enabling effective structural modeling.
- Visual action vertices can be incorporated into graphs, capturing the relationships between objects and effectors.

Can we formulate video pre-training as graph-to-graphs generative modeling, enabling policy learning on limited action-labeled data?

Motivation

Three critical challenges

(1) Embodiment discrepancy:

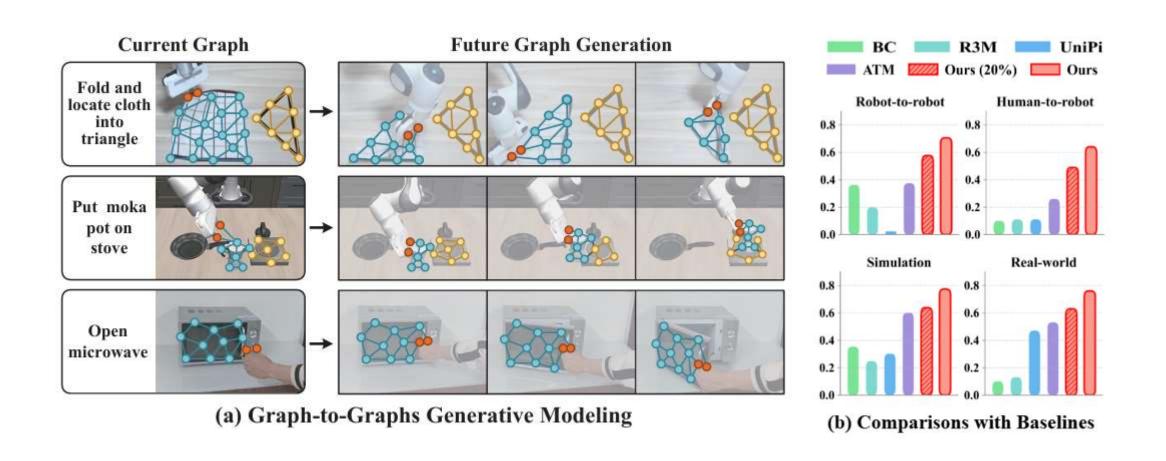
The source video and target scene often exhibit substantial embodiment discrepancy, hindering the transfer of learned action knowledge.

The properties of distinct objects exhibit significant variability, such as stiffness, inhibiting the generative modeling network from capturing diverse object behaviors.

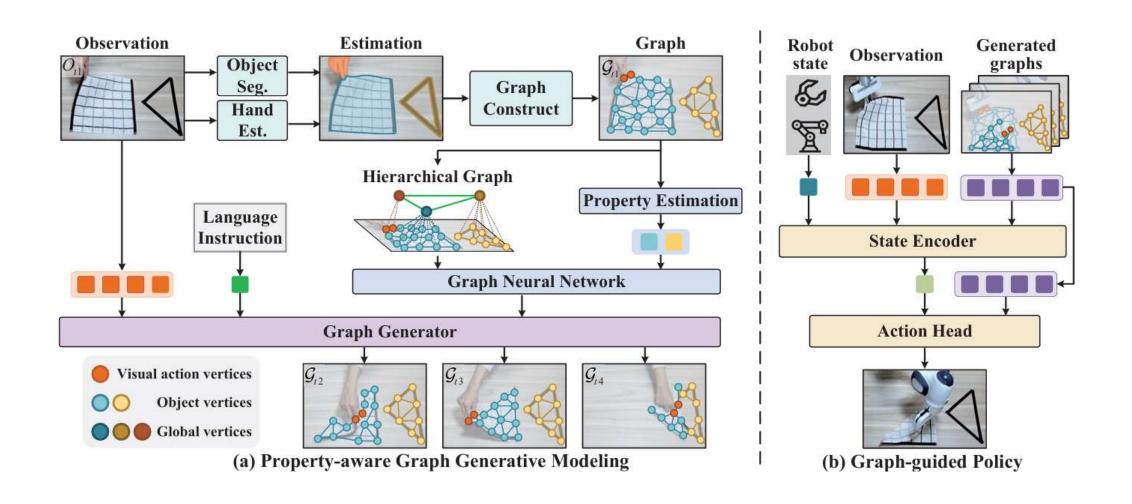
(3) Contradiction between internal and global modeling:

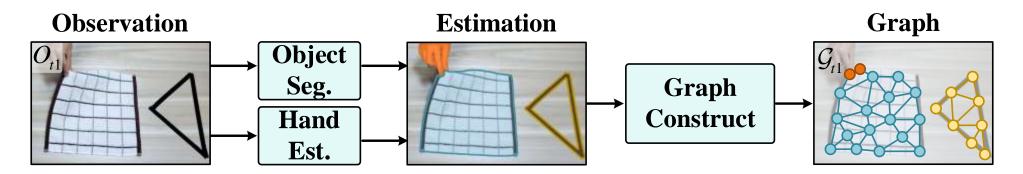
Modeling long-range dependencies is crucial for capturing spatial relationships, but directly expanding edge construction range potentially overwhelms important internal structures

We propose the action-informed transferable graph representation, which extracts visual action vertices by abstracting key interaction points of the embodiment.

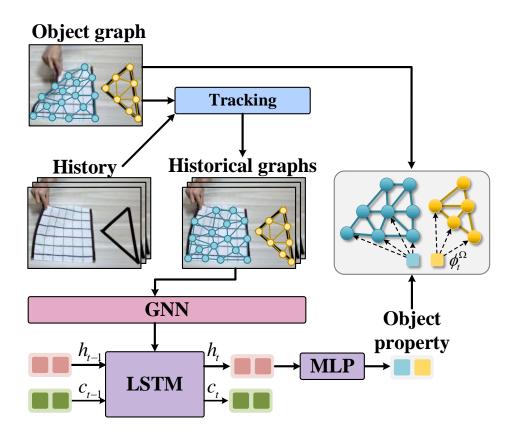

We propose to infer properties from historical observations and integrate them into graphs, facilitating predictions for objects with distinct properties.

We present a hierarchical architecture, integrating global vertices for long-range information propagation.


Motivation

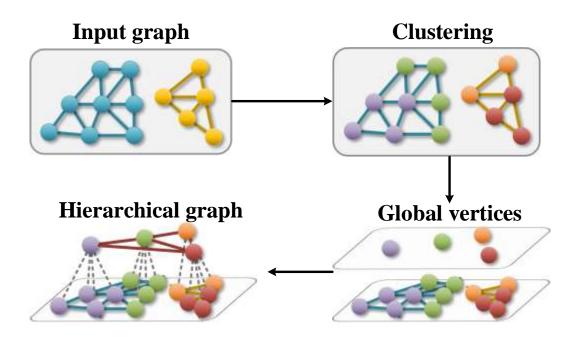

Methods

Action-informed Transferable Graph


Object vertices: The object graph dynamics describe the change in object state, irrelevant to the agent embodiment, enhancing the cross-embodiment learning ability

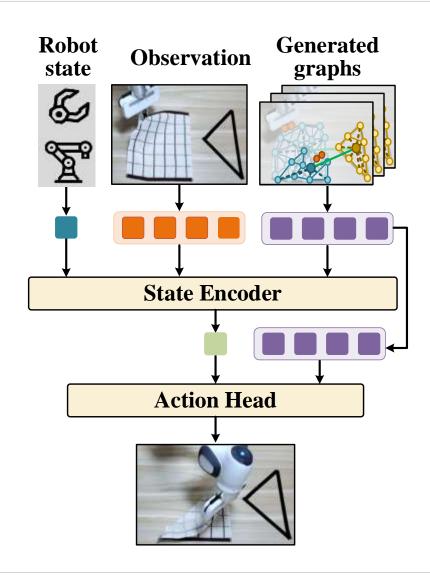
Visual action vertices: The incorporation of visual action vertices enables our approach to capture object-embodiment interactions

Property-aware Graph Generative Modeling



Object property estimation

We retrieve object-centric graphs and track vertex set across historical observations. The historical information is encoded into object properties.


Hierarchical graph modeling

Vertices are clustered with the root global vertex added to each cluster. Edges are then constructed to connect the hierarchical structure.

Graph Guided Policy Learning

State encoder: The state encoder encodes all modalities to generate the state representation.

Action Head: The MLP action head generates action sequences.

Experiments - Video Pre-training for Imitation Learning

Table 1. Average success rate on LIBERO benchmark. 50 videos are collected for pre-training, 'Num of L-demos' indicates the number of action-labeled demonstrations utilized for training. Results are averaged over three seeds.

Methods	Num of L-demos	Libero-Spatial	Libero-Object	Libero-Goal	Libero-Long	Libero-90
BC-Full-Trainset	50	0.71 ± 0.03	0.71 ± 0.08	0.76 ± 0.01	0.24 ± 0.02	0.38 ± 0.01
BC	10	0.39 ± 0.08	0.51 ± 0.13	0.42 ± 0.04	0.16 ± 0.03	0.29 ± 0.01
R3M [29]	10	0.49 ± 0.04	0.52 ± 0.02	0.05 ± 0.01	0.09 ± 0.03	0.09 ± 0.00
UniPi [18]	10	0.69 ± 0.04	0.59 ± 0.03	0.11 ± 0.02	0.05 ± 0.02	0.07 ± 0.01
ATM [21]	10	0.68 ± 0.02	0.68 ± 0.06	0.77 ± 0.01	0.39 ± 0.15	0.48 ± 0.02
Ours (20%)	2	$\boldsymbol{0.75 \pm 0.02}$	$\boldsymbol{0.75 \pm 0.02}$	0.74 ± 0.03	$\boldsymbol{0.43 \pm 0.05}$	$\boldsymbol{0.52 \pm 0.02}$
Ours	10	$\boldsymbol{0.88 \pm 0.02}$	$\boldsymbol{0.89 \pm 0.02}$	$\boldsymbol{0.87 \pm 0.03}$	$\boldsymbol{0.56 \pm 0.03}$	$\boldsymbol{0.67 \pm 0.01}$

Experiments - Video Pre-training for Imitation Learning

Table 2. Success rates on real-world manipulation experiments. 50 videos are collected for pre-training, 'Num of L-demos' indicates th number of action-labeled demonstrations utilized for training.

Methods I	BC-Full-Trainset	BC	R3M	UniPi	ATM	Ours (20%)	Ours
Overall 0.44 0.10		0.13 0.48		0.53	0.63	0.76	
Methods	Num of L-demos	Open drawer	Stack block	Open oven	Put fruit on plate	Press button	Pour from cup to cup
BC-Full-Trainse	et 50	0.7	0.7	0.4	0.7	0.6	0.4
ВС	10	0.3	0.2	0.2	0.2	0.1	0.0
R3M [29]	10	0.4	0.3	0.2	0.3	0.0	0.0
UniPi [18]	10	0.6	0.6	0.5	0.7	0.6	0.5
ATM [21]	10	0.8	0.6	0.7	0.7	0.7	0.5
Ours (20%)	2	0.7	0.7	0.7	0.8	0.7	0.6
Ours	10	0.8	0.8	0.8	0.9	0.8	0.8
Methods	Num of	Sweep	Insert	Push	Fold	Fold and	Straighten
	L-demos	table	box	box	cloth	put cloth	rope
BC-Full-Trainse	et 50	0.6	0.5	0.2	0.3	0.0	0.2
ВС	10	0.1	0.0	0.0	0.1	0.0	0.0
R3M [29]	10	0.1	0.1	0.0	0.1	0.0	0.1
UniPi [18]	10	0.7	0.5	0.3	0.3	0.1	0.3
ATM [21]	10	0.7	0.4	0.5	0.4	0.1	0.3
Ours (20%)	2	0.6	0.6	0.5	0.7	0.4	0.5
Ours	10	0.8	0.6	0.7	0.8	0.6	0.7

Experiments - Cross-embodiment Transfer

Table 3. Robot-to-robot experiment results on LIBERO benchmark. We collect 50 videos from a Franka arm and 10 action-labeled demonstrations from a UR arm for each task. 'Num of L-demos' indicates the number of action-labeled demonstrations utilized for training. Results are averaged over three seeds.

Methods	Num of L-demos	Libero-Spatial	Libero-Object	Libero-Goal	Libero-Long	Libero-90
ВС	10	0.42 ± 0.05	0.54 ± 0.09	0.41 ± 0.04	0.17 ± 0.04	0.27 ± 0.01
R3M [29]	10	0.39 ± 0.03	0.44 ± 0.04	0.03 ± 0.03	0.06 ± 0.05	0.07 ± 0.02
UniPi [18]	10	0.03 ± 0.02	0.04 ± 0.01	0.03 ± 0.02	0.01 ± 0.01	0.01 ± 0.01
ATM [21]	10	0.45 ± 0.04	0.56 ± 0.09	0.41 ± 0.04	0.17 ± 0.09	0.28 ± 0.04
Ours (20%)	2	0.69 ± 0.05	0.71 ± 0.03	$\boldsymbol{0.67 \pm 0.05}$	0.34 ± 0.06	$\boldsymbol{0.47 \pm 0.02}$
Ours	10	$\boldsymbol{0.81 \pm 0.04}$	$\boldsymbol{0.85 \pm 0.02}$	$\boldsymbol{0.81 \pm 0.05}$	$\boldsymbol{0.46 \pm 0.03}$	$\boldsymbol{0.60 \pm 0.02}$

Experiments - Cross-embodiment Transfer

Table 4. Human-to-robot transfer experiment results on real-world. We collect 50 videos of a human performing the task and 10 action-labeled robot demonstrations for each task. 'Num of L-demos' indicates the number of action-labeled demonstrations utilized for training.

Methods	BC	R3M	UniPi	9	ATM (Ours (20%)	Ours
Overall 0.10 0.11 0.11		9	0.27 0.49				
Methods	Num of L-demos	Open drawer	Stack block	Open oven	Put fruit on plate	Press button	Pour from cup to cup
ВС	10	0.3	0.2	0.2	0.2	0.1	0.0
R3M [29]	10	0.3	0.2	0.2	0.2	0.0	0.0
UniPi [18]	10	0.2	0.1	0.1	0.1	0.2	0.0
ATM [21]	10	0.4	0.4	0.4	0.5	0.2	0.2
Ours (20%)	2	0.7	0.4	0.6	0.7	0.5	0.4
Ours	10	0.7	0.6	0.7	0.8	0.7	0.6
Methods	Num of	Sweep	Insert	Push	Fold	Fold and	Straighten
	L-demos	table	box	box	cloth	put cloth	rope
BC	10	0.1	0.0	0.0	0.1	0.0	0.0
R3M [29]	10	0.2	0.1	0.0	0.1	0.0	0.0
UniPi [18]	10	0.1	0.1	0.1	0.2	0.0	0.1
ATM [21]	10	0.3	0.2	0.2	0.3	0.1	0.0
Ours (20%)	2	0.5	0.4	0.4	0.6	0.3	0.4
Ours	10	0.6	0.6	0.6	0.7	0.5	0.6

Experiments – Ablation Analysis

Table 5. Ablation experiments with GraphMimic on robot-to-robot transfer experiments. Default settings are marked in gray .

(a) State representations.

(b) Visual action representations.

Variants	Spatial	Object	Goal	Long	Variants Spatial Object Goal	Long	
Graph with grid vertices Flow with related points Graph with related vertices	0.51 0.66 0.81	0.60 0.65 0.85	0.43 0.53 0.81	0.25 0.23 0.46	No action 0.41 0.61 0.42 End-effector 0.56 0.59 0.51 Interaction points 0.81 0.85 0.81	0.18 0.19 0.46	
(c) Object repre	esentation	s.		(d) Hierarchical modeling.			
Variants	Spatial	Object	Goal	Long	Variants Spatial Object Goal	Long	
Manipulated objects All objects Task-related objects	0.71 0.55 0.81	0.76 0.66 0.85	0.67 0.52 0.81	0.31 0.27 0.46	Local connection 0.73 0.79 0.71 Global connection 0.75 0.72 0.73 Hierarchical architecture 0.81 0.85 0.81	0.38 0.37 0.46	

Table 6. Ablation study on the object property estimation module. Default settings are marked in gray.

Variants	Real-world	Human-to-robot		
No estimation	0.66	0.57		
No LSTM	0.73	0.60		
Graph+LSTM	0.76	0.64		

Thank you!