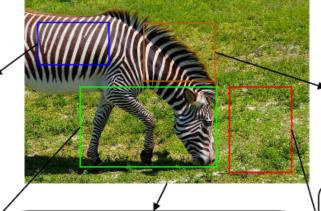
Towards Improved Text-Aligned Codebook Learning: Multi-Hierarchical Codebook-Text Alignment with Long Text

Guotao Liang^{1,2}, Baoquan Zhang¹, Zhiyuan Wen², Junteng Zhao¹, Yunming Ye¹, Kola Ye³, Yao He³

¹Harbin Institute of Technology, Shenzhen ²Peng Cheng Laboratory, ³SiFar Company

Highlight

Motivation


Original Caption: A zebra grazing on lush green grass in a field.

Zebra Body Color:

adorned with a striking pattern of black and white stripes.

Zebra Position:

The zebra is positioned towards the left side of the image, its body oriented towards the right.

Picture Content Description:

In the serene expanse of a grassy field, a zebra is captured in the act of grazing. The zebra's head is lowered towards the ground, indicating its engagement in grazing. The entire scene paints a tranquil picture of life in the wild.

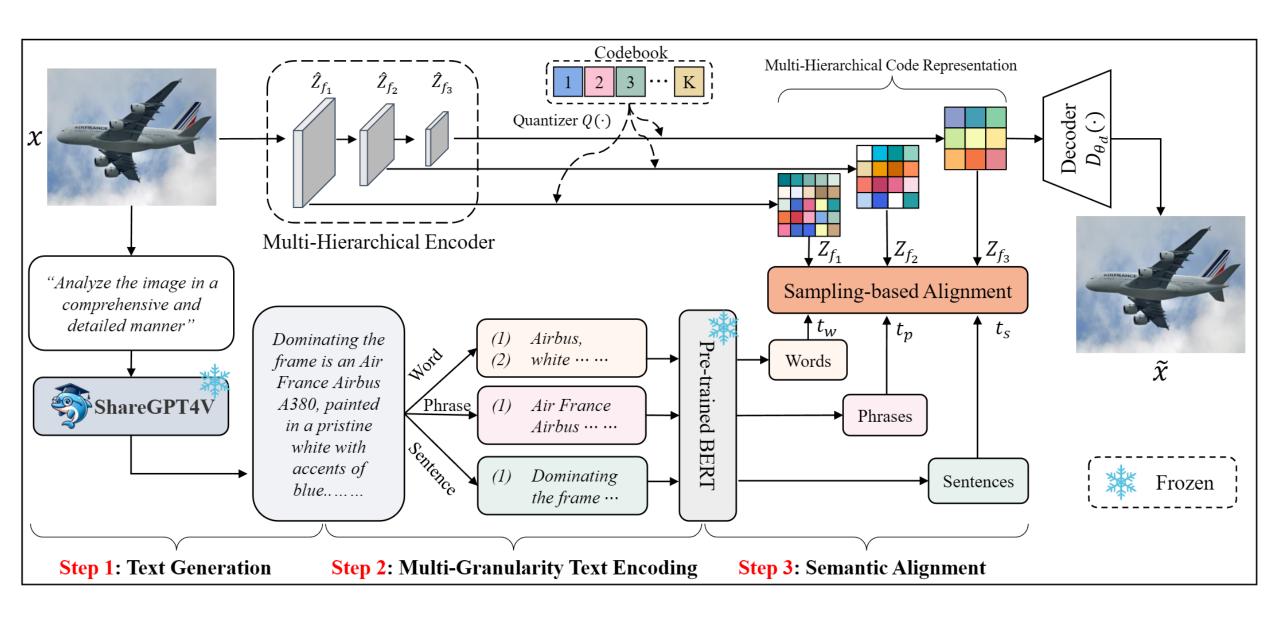
Zebra Mane Color-Position:

The zebra's mane, a contrasting shade of brown, stands erect on its neck.

Background:

The field itself is a vibrant green.

Long Text: In the serene expanse of a grassy field, a zebra, adorned with a striking pattern of black and white stripes, is captured in the act of grazing. The zebra's mane, a contrasting shade of brown, stands erect on its neck, adding to its majestic appearance. The zebra is positioned towards the left side of the image, its body oriented towards the right, as if gazing into the distance. The field itself is a vibrant green.


> Challenges

- How to encode long text
- How to align codebook and text

Proposed Method: Text-Augmented VQ

Proposed Method: Text-Augmented VQ

• Challenges: $|Z_f| \neq |t|$

We formulate the semantic alignment problem as an <u>optimal transport</u> <u>problem</u>: Wasserstein distance

Theorem 1 Let $\mu \in \mathcal{P}_2(\mathbb{R}^d)$ be absolutely continuous with respect to the Lebesgue measure with Radon–Nikodym density $\rho(x)$. Let $\nu = \sum_{i=1}^n \nu_i \delta_{y_i}$ for some $\{y_j\}_{j=1}^n \subset \mathbb{R}^d$, $\nu_j \geq 0$ and $\sum_{j=1}^n \nu_j = 1$, where δ is Dirac delta function. Then, for any $\epsilon > 0$, there exists a fully connected deep neural network $u(\cdot) : \mathbb{R}^d \to \mathbb{R}$ with sufficiently large width and depth (depending on $\epsilon > 0$) such that the Wasserstein distance between $\nabla u(\mu)$ and ν is less than ϵ , where $\nabla u(\cdot)$ is gradient of $u(\cdot)$.

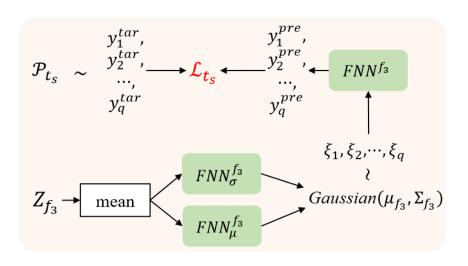
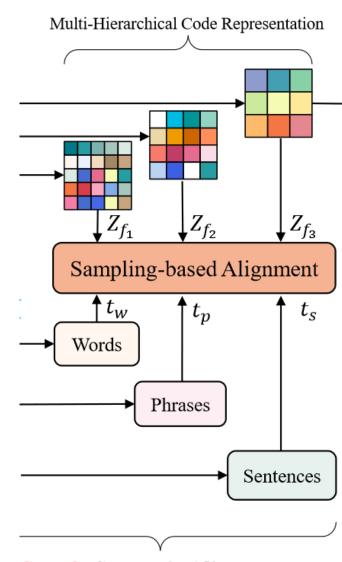



Figure 3. Illustration of the Sampling-based Alignment Strategy.

Step 3: Semantic Alignment

Models		#Tokens	CelebA-HQ	-	
	Size		FID↓	FID↓	FID↓
VQCT [60]	6207	512	5.02	4.52	9.82
VQ-GAN [13]	1024	256	5.66	5.31	14.45
LG-VQ [29]	1024	256	5.34	4.74	10.72
TA-VQ (Ours)	1024	256	5.03	4.60	10.32
CVQ [65]	1024	256	5.19	4.64	9.94
LG-CVQ [29]	1024	256	4.90	4.40	9.69
TA-CVQ (Ours)	1024	256	4.71	4.03	9.65

Table 1. Results (FID↓) of image reconstruction on CelebA-HQ, CUB-200, and MS-COCO. The best results are highlighted in bold.

Experiments

VQGAN

TA-VQ

LG-VQ

Model	Visual Grounding Accuracy(0.5)↑
VQ-GAN [13]	9.14
VQCT [60]	9.46
LG-VQ [29]	9.62
TA-VQ	10.17

Table 9. Result of visual grounding on refcoco dataset [59].

Setting

VQCT [60]

LG-VQ [29]

TA-VQ

VQ-GAN [13]

Model	In	nage Captio	ning	
Model	BLEU4†	ROUGE-L↑	METEOR1	`CIDEr-D↑
VQ-GAN [13]	1.29	33.40	24.47	93.62
VQCT [60]	1.38	26.50	24.63	98.22
LG-VQ [29]	1.69	34.73	25.78	102.77
TA-VQ	1.90	35.50	27.61	109.42

Table 12. Results of VQA on COCO-QA [46] dataset.

40.42

37.82

40.97

41.56

VQA

Accuracy\dama\dama\UPS\dama[55]

82.06

83.22

83.56

83.77

VQCT

Figure 6. Visualizations for visual grounding. The blue boxes are the ground-truth, red boxes are the model predictions. More Examples are provided in supplementary materials.

bird has a small belly, a medium face and white beak, and a short wing bill.

VQGAN: this bird

VOCT: the bird is is white with a black large, black head, belly, and has a beak. and a white beak.

black head.

its top parts, and has

a white belly and

the throat of the bird is blue, the wings and feet black.

LG-VQ: this bird is gray, white, and black with a white crown.

bird has wings that are grey and has a white belly.

Table 11. Results of image captioning on CUB-200 datasets.

Experiments

Figure 4. Examples of unconditional generation on CelebA-HQ. More examples are provided in supplementary materials.

Input	VQGAN	LG-VQ	TA-VQ	Input	VQGAN	LG-VQ	TA-VQ
1	9	is a	9	5			
the woman wears heavy makeup. she has wavy hair. she is young.		6		this woman is wearing lipstick. she has blond hair, and pointy nose.	9		630
To B				00		1	

Figure 5. Examples of semantic synthesis (row 1), text-to-image (row 2), and image completion (row 3). More examples are provided in supplementary materials.

Model	Image Completion FID↓
VQ-GAN	9.02
LG-VQ	8.14
TA-VQ	8.04

Table 6. Result (FID↓) of image completion on CelebA-HQ.

Model	Text-to-Image
Wiodei	$FID\downarrow$
Corgi [67]	19.74
LAFITE [66]	12.54
VQ-GAN [13]	15.29
CVQ [65]	13.23
LG-VQ [29]	12.61
TA-VQ	11.97

Table 10. Results (FID \downarrow) of text-to-image on CelebA-HQ.

Model	Unconditional Generation FID↓
DC-VAE [42]	15.8
VQ-GAN [13]	10.2
LG-VQ [29]	9.1
TA-VQ	8.8

Table 7. Result (FID \downarrow) of unconditional image generation on CelebA-HQ.

Model	Semantic Synthesis		
	FID↓		
VQCT [60]	14.47		
VQ-GAN [13]	11.53		
LG-VQ [29]	11.46		
TA-VQ	10.74		

Table 8. Result (FID \downarrow) of semantic synthesis on CelebA-HQ.

Thanks for Listening!