

COAP: Memory-Efficient Training with Correlation-Aware Gradient Projection

Jinqi Xiao^{1,2} · Shen Sang¹ · Tiancheng Zhi¹ · Jing Liu¹ · Qing Yan¹ · Yuqian Zhang² · Linjie Luo¹ · Bo Yuan² ¹ByteDance Inc. ²Rutgers University

Motivation & Overview Figure 1: Profiling the GPU memory usage during the training stage of LLaVA-v1.5-7B on 1xA100 INPUT **AUTOGRAD DETAIL PARAMETER OPTIMIZER STATE** GRADIENT Unknown **AdamW with AC AdamW COAP** with AC and LOMO Peak Memory: 73.98 GB Peak Memory: 63.80 GB | Peak Memory: 20.77 GB | **Rank: 512 8**5 60

Time (s)

1e7

Challenge:

1. Optimizer states are a major memory bottleneck in large-scale model training.

Time (s)

2. Reducing memory costs often incurs high computational costs or compromises training stability & model performance.

❖ Solution (COAP):

Time (s)

- 1. Correlation-Aware Projection Update: Smoothly evolves the projection matrix, leveraging prior optimization history for consistent gradient representation.
- 2. Low-Cost SVD Recalibration: Using occasional low-cost SVD to recalibrate the low-rank projection matrices, slashing computational cost $(O(mn^2) \rightarrow o(mn^2))$ O(mr²)) and promoting robust optimization.

❖Strengths:

- 1. Significant Memory Reduction: Up to 81% optimizer memory savings with minimal overhead (e.g., +2% training time).
- 2. Maintained/Improved Performance: Achieves comparable or superior model quality to full-rank training.
- 3. Seamless Integration: Easily integrates with optimizers (e.g., AdamW, Adafactor). Effectiveness proven across multimodal, diffusion, and large language models (LLMs).

Proposed Method Global Optimum Global Optimum balance Low-rank space P_t G_t and M_{t-1}^{proj} ^{''} is closer **Update Moment** to optimum moves away from optimum Get P_t by SVD(G_t) G_{t+2} Keep the principal directions of G_t GaLore

For a weight matrix $W \in \mathbb{R}^{m \times n}$, the corresponding gradient matrix at time step t can be denoted as $G_t = \nabla_W \mathcal{L}(W) \in \mathbb{R}^{m \times n}$.

Then, the general weight update process can be formulated as: $W_{t+1} = W_t - \eta \rho_t(G_t)$ (η is the learning rate, ρ_t adjusts the gradients.)

1. Inter-projection Correlation-aware ${\cal P}$ Update				
$\min_{P} \;\; \underbrace{ ext{MSE}(\hat{G},G)} \;\; \underbrace{(1}$	$-\operatorname{CosSim}(\hat{M},G)),$			
${\bf reconstruction\ term}$	$\overline{direction term}$			

2. Occasional Low-cost SVD

$$egin{aligned} Q_{ ext{red}},_- &= ext{QR}_{ ext{red}}(G_t P_{t-1}), \ U, \Sigma, Z^ op &= ext{SVD}(Q_{ ext{red}}^ op G_t), \ P_t &= Z \end{aligned}$$

Training with Low-rank Gradient

$$egin{aligned} M_t^{ ext{proj}} &= eta_1 M_{t-1}^{ ext{proj}} + (1-eta_1) G_t^{ ext{proj}} \ V_t^{ ext{proj}} &= eta_2 V_{t-1}^{ ext{proj}} + (1-eta_2) (G_t^{ ext{proj}})^2 \ W_{t+1} &= W_t - \eta
ho_t (G_t^{ ext{proj}}) \
ho_t (G_t^{ ext{proj}}) &= rac{M_t^{ ext{proj}}/(1-eta_1^t)}{\sqrt{V_t^{ ext{proj}}/(1-eta_2^t)} + \epsilon} P_t^ op \ G_t^{ ext{proj}} &= G_t P_t \end{aligned}$$

Adam with COAP

Input: Weight matrix $W \in \mathbb{R}^{m \times n}$, Learning rate η , Rank r, Betas $[\beta_1, \beta_2]$, Update interval $[\lambda, T_u]$. Initialize: $M_0^{\text{proj}} \in \mathbb{R}^{m \times r} \leftarrow 0, V_0^{\text{proj}} \in \mathbb{R}^{m \times r} \leftarrow 0, t \leftarrow 0$ **Randomly Initialize:** $P_0 \in \mathbb{R}^{n \times r}$ Compute: $P_0 \leftarrow (P_0, G_0)$ Step 2 **for** t in $[1, 2, \cdots]$ **do**

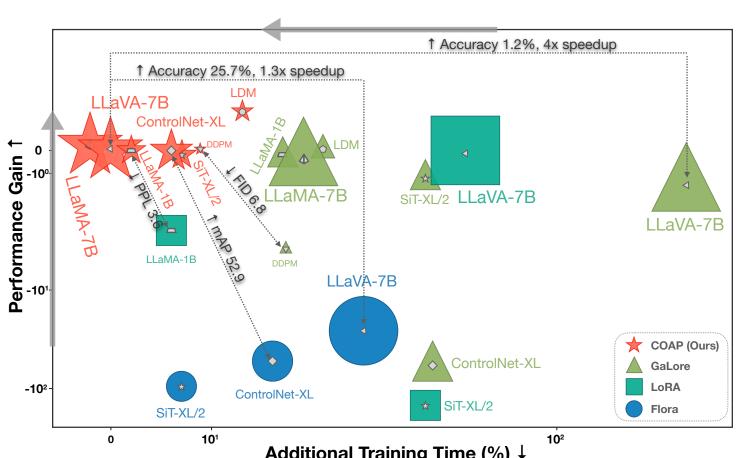
Compute: gradient G_t of W_t in the loss function. if $t \mod T_{\mathbf{u}} = 0$ then if $t \mod (\lambda \times T_{\mathrm{u}}) = 0$ then Compute: $P_t \leftarrow (P_{t-1}, G_t)$ Step 2 Update: $P_t \leftarrow (P_{t-1}, G_t, M_{t-1}) \triangleright \mathsf{Step 1}$

 $oldsymbol{P}_t \leftarrow oldsymbol{P}_{t-1}$ Project gradient and moments into low-rank space. $oldsymbol{G}_t^{ ext{proj}} \leftarrow oldsymbol{G}_t oldsymbol{P}_t$ $\boldsymbol{M}_t^{\mathrm{proj}} \leftarrow \beta_1 \boldsymbol{M}_{t-1}^{\mathrm{proj}} + (1 - \beta_1) \boldsymbol{G}_t^{\mathrm{proj}}$ $V_t^{\text{proj}} \leftarrow \beta_2 V_{t-1}^{\text{proj}} + (1 - \beta_2) (G_t^{\text{proj}})^2$ Calculate the bias correction term in low-rank space. $\Delta oldsymbol{W}_t^{ ext{proj}} \leftarrow rac{oldsymbol{M}_t^{ ext{proj}}/(1-eta_1^t)}{\sqrt{oldsymbol{V}_t^{ ext{proj}}/(1-eta_2^t)}+\epsilon}$ \triangleright Restore $\triangle W_t^{\text{proj}}$ to original space and update W. $oldsymbol{W}_t \leftarrow oldsymbol{W}_{t-1} - \eta \Delta oldsymbol{W}_t^{ ext{proj}} oldsymbol{P}_t^{ op}$

Return: updated W

Main Results

Comparison between COAP and other low-rankbased methods.



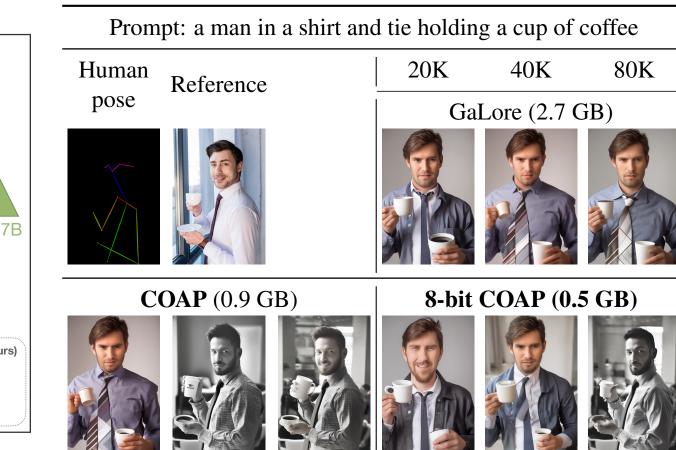
Pre-training SiT-XL/2 with REPA on the ImageNet-1K dataset for 400K steps using 8xH100 GPUs.

Method	Optimizer Mem. (GB)↓	Model Mem. (GB)↓	Training Time↓	FID↓
AdamW	5.1	2.5	20.8 h	1.9
GaLore LoRA ReLoRA COAP	2.6 (-49%) 3.6 (-29%) 3.6 (-29%) 2.6 (-49%)	2.5 3.7 (+48%) 3.7 (+48%) 2.5	+38% +33% +33% +14%	2.3 151.9 151.8 2.2
Adafactor	2.5	2.5	25.5 h	1.9
GaLore Flora COAP	1.5 (-40%) 1.6 (-36%) 1.5 (-40%)	2.5 2.5 2.5	+33% +7% + 7%	3.0 115.2 2.1

Fine-tuning LLaVA-v1.5-7B on the ScienceQA dataset using 1xA100. "OOM" means out-of-memory.

Method	Optimizer Mem. (GB)↓	Model Training Mem. (GB)↓ Time↓		FID↓
AdamW	5.1	2.5	20.8 h	1.9
GaLore	2.6 (-49%)	2.5	+38%	2.3
LoRA ReLoRA	3.6 (-29%) 3.6 (-29%)	3.7 (+48%) 3.7 (+48%)	+33% +33%	151.9 151.8
COAP	2.6 (-49%)	2.5	+14%	2.2
Adafactor	2.5	2.5	25.5 h	1.9
GaLore	1.5 (-40%)	2.5	+33%	3.0
Flora	1.6 (-36%)	2.5	+7%	115.2
COAP	1.5 (-40%)	2.5	+7%	2.1

Comparison of generated images at different training steps (20K, 40K, 80K).



Pre-training LLaMA-1B and LLaMA-7B on the C4 dataset using 8xH100 GPUs.

Model	Method	Optimizer Mem. (GB)↓	Model Mem. (GB)↓	Training Time↓	PPL↓
LLaMA 1B (100K)	AdamW	4.99	2.49	28.50 h	15.56
	GaLore	1.94 (-61%)	2.49	+17%	15.64
	LoRA	2.27 (-55%)	3.38 (+36%)	+6%	19.21
	ReLoRA	2.27 (-55%)	3.38 (+36%)	+6%	18.33
	COAP	1.94 (-61%)	2.49	+2%	15.56
LLaMA	8-bit Adam	12.55	12.55	52.01 h	15.39
7B (80K)	8-bit GaLore	5.25 (-58%)	12.55	+19%	15.47
	8-bit COAP	5.25 (-58%)	12.55	-2%	15.28

Training ControlNet based on SDXL for 80K steps using 8xH100 GPUs in BF16 format, conditioned on human poses.

Method	Rank Ratio	Optimizer Mem. (GB)↓	$\frac{\text{mAP}\uparrow}{20\text{K}}$	@ train 40K	ing steps 80K	Converged	Training Time (80K)↓
AdamW	-	9.3	18.3	19.1	19.9	Х	19.3 h
Adafactor	-	5.1	19.2	70.0	72.7	\checkmark	22.3 h
Flora	2	3.9 (-24%)	18.0	18.9	19.6	Х	+16%
GaLore	2	4.7 (-8%)	18.6	67.0	72.7	✓	+39%
GaLore-8bit	2	3.1 (-39%)	19.6	20.8	20.9	×	+49%
COAP	2	3.6 (-29%)	66.6	71.6	73.4	✓	+4%
8-bit COAP	2	1.9 (-63%)	18.7	66.9	72.2	✓	+17%
GaLore	4	3.5 (-31%)	18.9	19.7	19.5	Х	+39%
8-bit GaLore	4	3.1 (-39%)	18.8	19.7	19.8	×	+50%
COAP	4	1.8 (-65%)	50.9	70.4	72.1	✓	+5%
8-bit COAP	4	1.0 (-80%)	19.4	19.2	71.5	✓	+15%
GaLore	8	2.7 (-47%)	18.6	18.2	19.7	Х	+35%
8-bit GaLore	8	2.3 (-55%)	18.6	18.2	19.7	×	+45%
COAP	8	0.9 (-82%)	25.8	70.2	72.6	✓	+6%
8-bit COAP	8	0.5 (-90%)	19.3	18.9	69.9	✓	+13%