

Few-shot Personalized Scanpath Prediction

Jingyi Xu

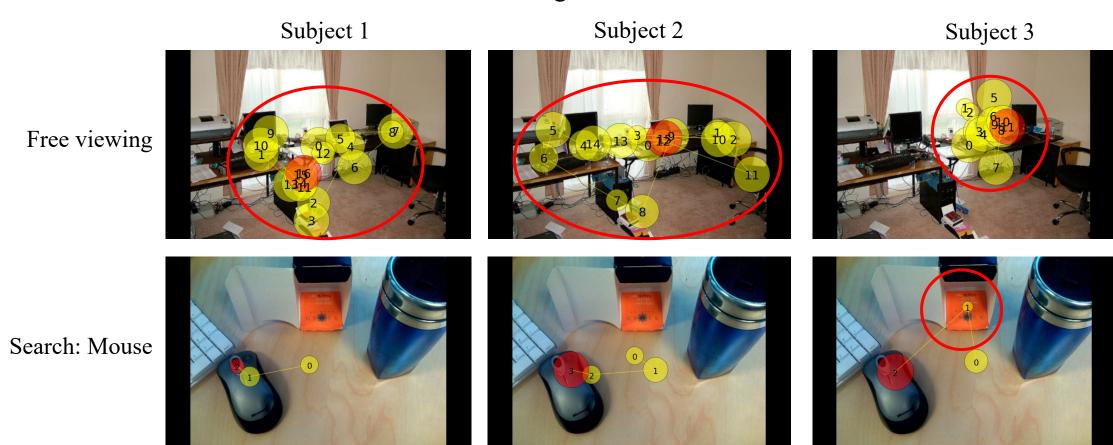
Sounak Mondal

Hieu Le

Gregory Zelinsky

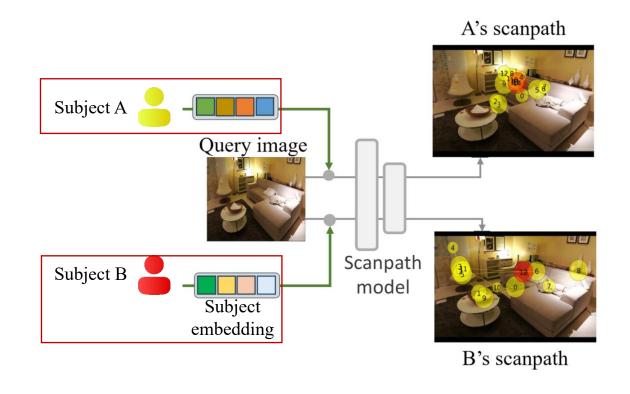
Minh Hoai

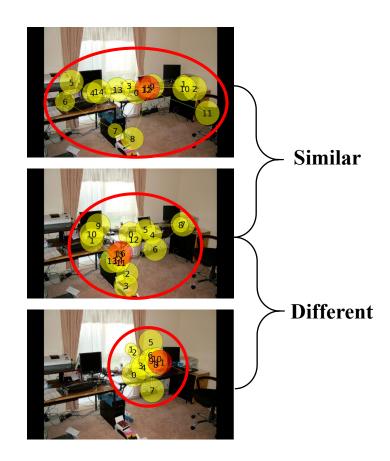
Dimitris Samaras



Personalized Scanpath Prediction

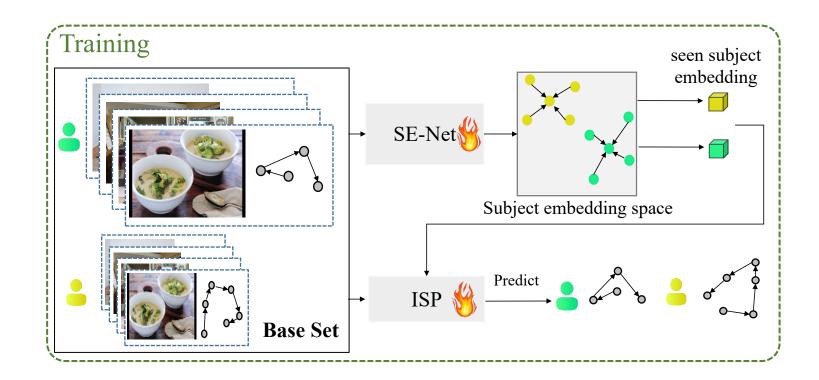
- Predicting individual-specific sequence of eye movements.
 - Individuals are different.
- Human attention various under different viewing tasks.

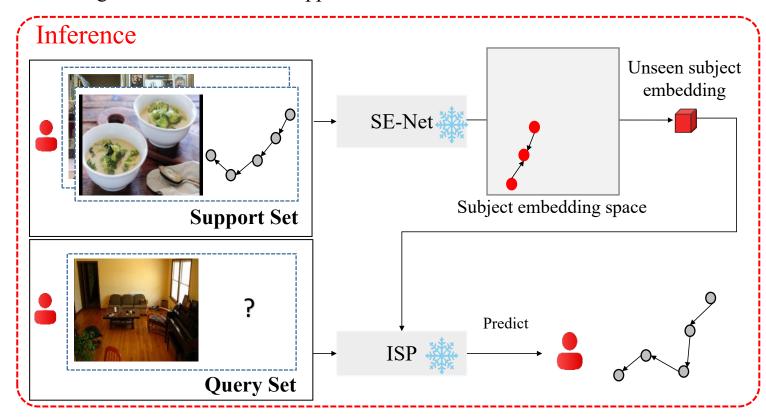



Few-shot personalized scanpath prediction

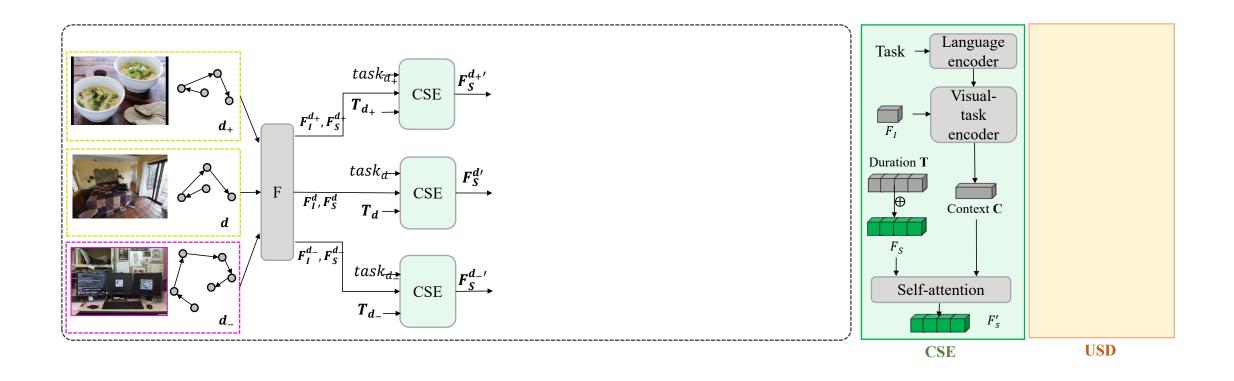
- Scanpath prediction models are data-hungry and parameter-heavy.
 - Collecting scanpath data requires up to 12 hours per subject.
 - Impractical in **real-life** application such as advertisement and recommendation.
- Few-shot Personalized Scanpath Prediction
 - Predict scanpath of <u>unseen</u> subject with <u>a few</u> labeled examples (image-scanpath).

Limitation of existing approachs

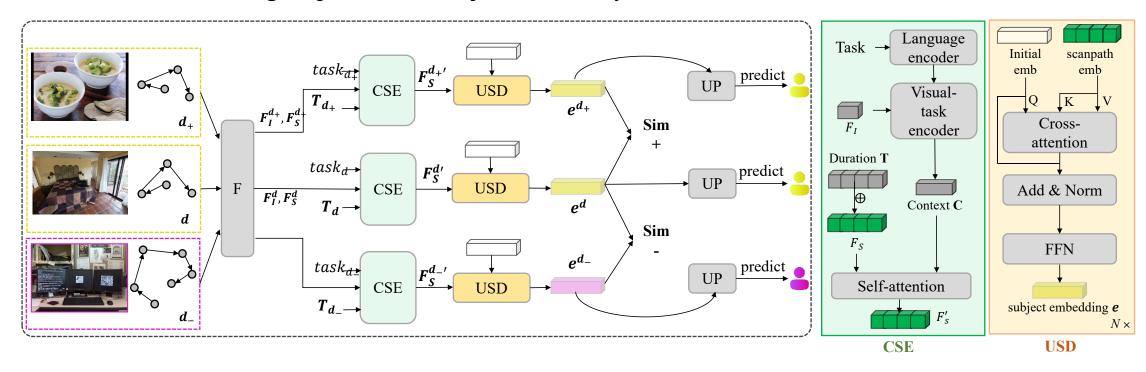

- ISP [Chen et al., CVPR 2024], EyeFormer [Jiang et al., USIT 2024]
 - Overfitting: Fine-tuning the model for **unseen subject** with minimal support data.
 - Failed to utilize subject similarity and difference.


Method – ISP-SENet

- Separately train two networks.
- SE-Net to learn subject embedding to represent unique attention traits and capture inter-subject variability.
- Individual Scanpath Predictor (ISP) [Chen et al., CVPR 2024] to predict scanpath.


Method – ISP-SENet

- Extract unseen subject embedding → guide ISP to predict scanpath of <u>unseen</u> subject on <u>unseen</u> images.
 - No fine-tuning on unseen subjects.
 - Reduce overfitting and benefit real-time applications.

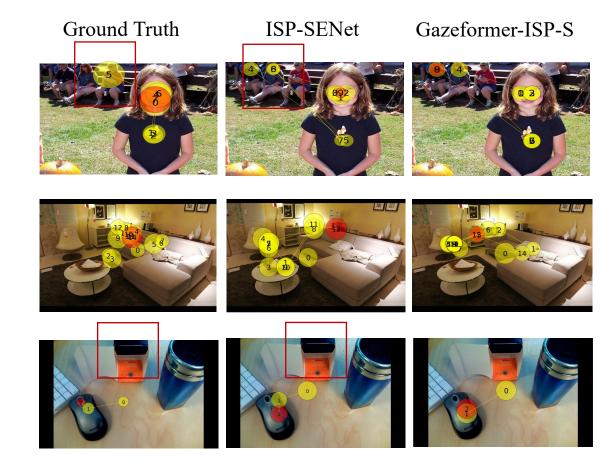

Method – Subject Embedding Network(SE-Net)

• Context-Scanpath Encoder (CSE): Obtain refined scanpath features $F_S^{d'}$ from image F_I^d , fixations position F_S^d and duration T_d , viewing task $\overline{task_d}$

Method – Subject Embedding Network(SE-Net)

- User-Scanpath Decoder (USD): Extract subject embedding e^d from refined scanpath features $F_S^{d'}$.
- User-Predictor (UP): Subject classification.
- Contrastive Learning: capture inter-subject variability.

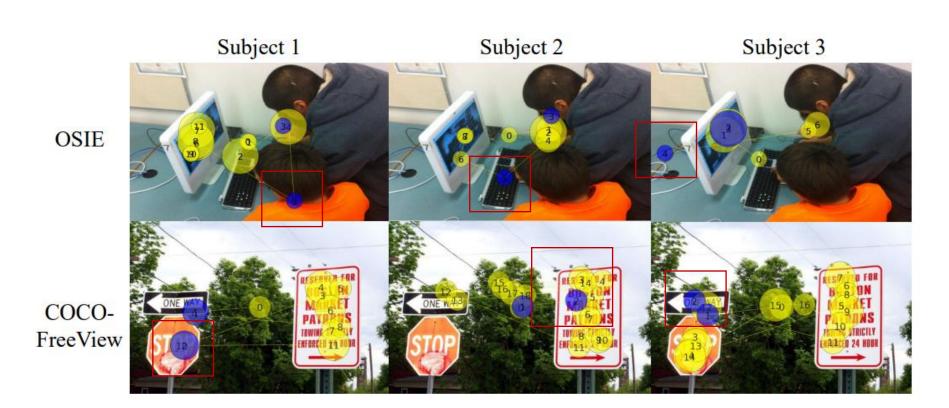
Quantitative Results

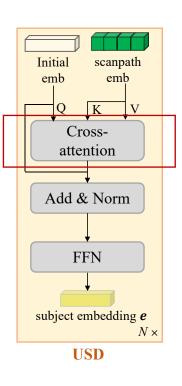

<i>n</i> -shot	Method	OSIE			COCO-FreeView			COCO-Search18		
		SM ↑	MM ↑	SED↓	SM ↑	MM ↑	SED↓	SM ↑	MM ↑	SED↓
n = 1	ChenLSTM-ISP	0.282	0.763	7.832	0.287	0.805	13.307	0.371	0.760	2.756
	Gazeformer-ISP	0.327	0.792	7.873	0.244	0.787	15.118	0.342	0.770	2.818
	ChenLSTM-ISP-S	0.328	0.793	7.601	0.339	0.814	12.523	0.448	0.803	2.394
	Gazeformer-ISP-S	0.354	0.801	7.503	0.333	0.817	12.538	0.446	0.802	2.463
	ISP-SENet	0.368	0.805	7.413	0.369	0.832	12.227	0.475	0.814	2.333
n=5	ChenLSTM-ISP	0.319	0.773	7.855	0.320	0.815	12.950	0.386	0.773	2.489
	Gazeformer-ISP	0.340	0.791	7.920	0.286	0.800	14.630	0.353	0.774	2.980
	ChenLSTM-ISP-S	0.329	0.791	7.649	0.338	0.814	12.540	0.449	0.803	2.380
	Gazeformer-ISP-S	0.354	0.801	7.499	0.333	0.817	12.539	0.445	0.803	2.457
	ISP-SENet	0.376	0.803	7.337	0.368	0.829	12.017	0.484	0.815	2.354
n = 10	ChenLSTM-ISP	0.322	0.777	7.740	0.323	0.819	12.541	0.393	0.781	2.394
	Gazeformer-ISP	0.345	0.794	7.916	0.317	0.805	14.224	0.370	0.785	2.765
	ChenLSTM-ISP-S	0.328	0.791	7.637	0.340	0.814	12.532	0.449	0.803	2.379
	Gazeformer-ISP-S	0.354	0.802	7.505	0.333	0.816	12.545	0.446	0.802	2.464
	ISP-SENet	0.375	0.803	7.318	0.367	0.828	11.956	0.482	0.815	2.359

Qualitative results

Unseen subject 1

Ground Truth ISP-SENet Gazeformer-ISP-S


Unseen subject 2



Analysis – Model interpretability

Cross-attention weights: which fixations have greater influence on the subject embedding.

- Highest attention weights on different objects
- Different initial focus

Summary

- We introduce Few-shot personalized scanpath prediction task.
- We create a pipeline that independently learn subject embedding and scanpath prediction.
- ISP-SENet achieves SOTA on various datasets under different viewing tasks.
- Our model is interpretable and encourages future work on personalized attention analysis.

Acknowledgement: This project is supported by US NSF grant IIS-2123920.