

ZoomLDM: Latent Diffusion Model for multi-scale image generation

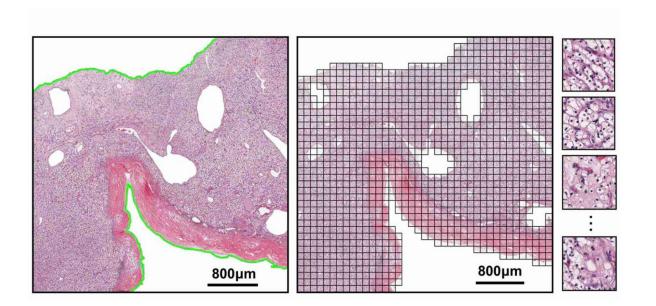
Srikar Yellapragada*, Alexandros Graikos*, Kostas Triaridis, Prateek Prasanna, Rajarsi Gupta, Joel Saltz, Dimitris Samaras

CVPR 2025

ExHall D Poster #229 Sunday June 15, 10:30 a.m. — 12:30 p.m.

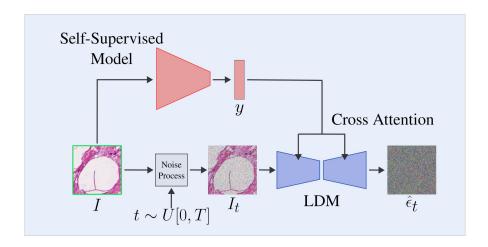
Challenges in Histopathology

- We want to generate images both at patch and WSI level
 - Labels are typically at whole slide level, eg. reports
- WSIs are inherently multi-scale



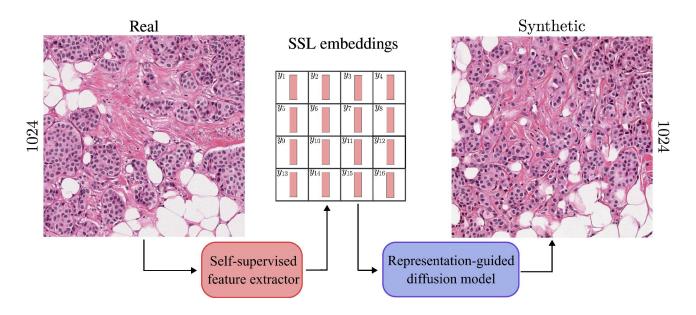
Previous work

 We proposed using representations learned with self-supervision in place of human annotations



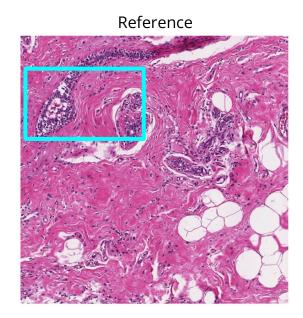
Previous work

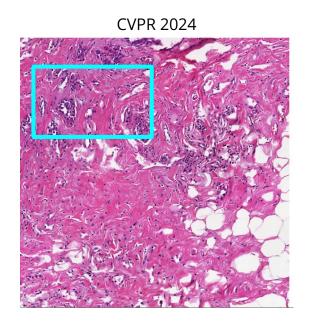
- Impractical to train directly on the entire digitized slides (32,000 x 32,000 px)
 - We introduced an algorithm to synthesize large histopathology images by spatially controlling the local, patch-based model



Limitations

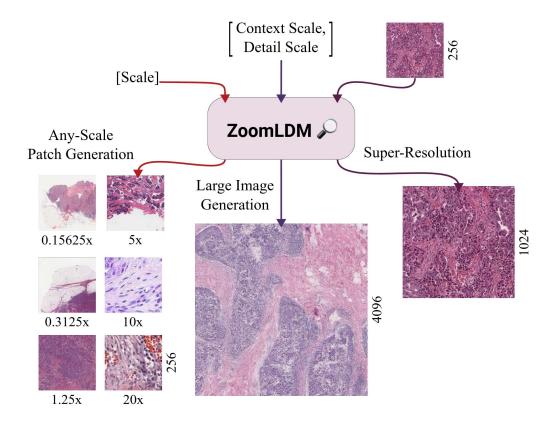
 Models that are restricted to a single magnification/scale fail to understand global context





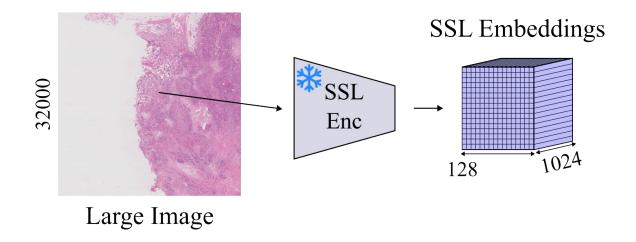
ZoomLDM - Multi-scale diffusion model

 Going multi-scale allows us to overcome this limitation.



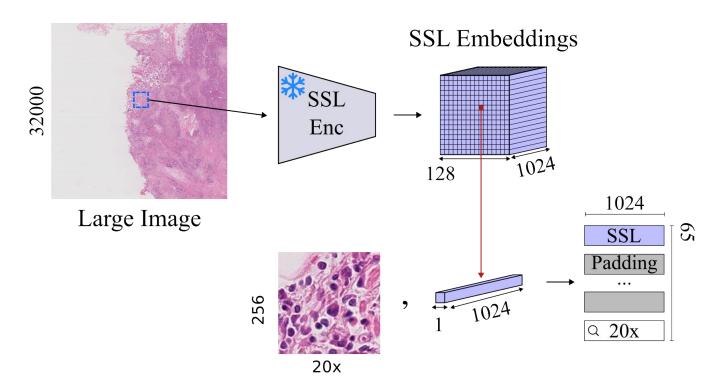
Multi-scale data

 We feed the WSI to a pre-trained SSL encoder (UNI [2]) to obtain a grid of SSL embeddings.



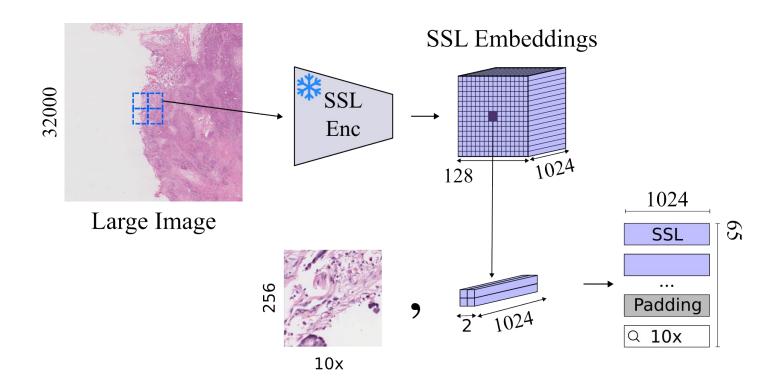
Multi-scale data: 20x

- We create (image, embedding) pairs at all magnifications
 - \circ 20x ⇒ single SSL embedding



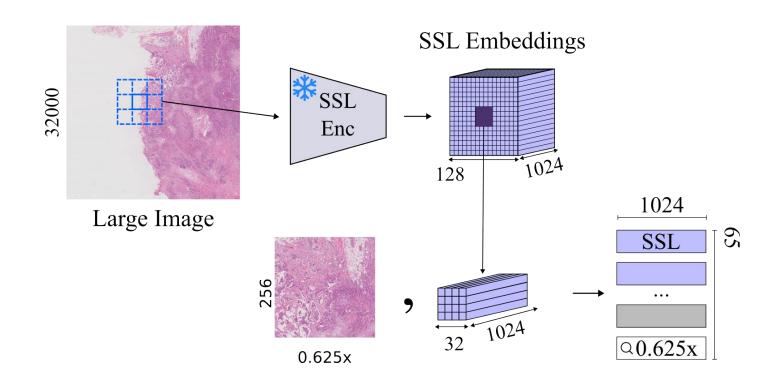
Multi-scale data: 10x

 \circ 10x \Rightarrow 4 SSL embeddings



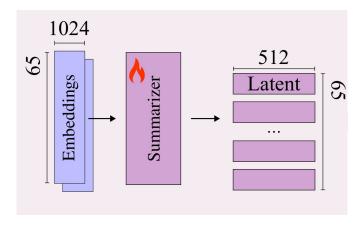
Multiscale data: Lower magnifications

 \circ 0.625x \Rightarrow 32x32 SSL embeddings, average pooled to 8x8



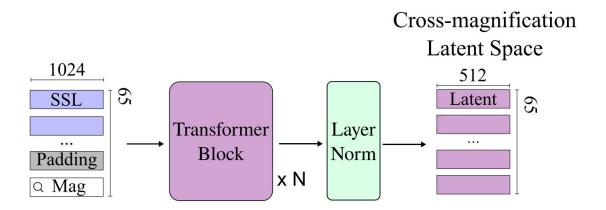
Summarizer

 We process embeddings with a Summarizer, projecting them to a shared latent space.



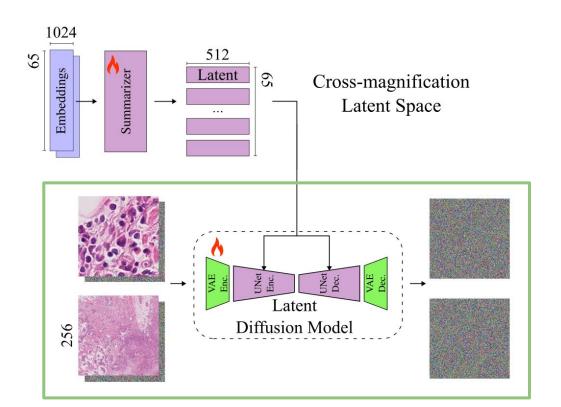
Summarizer

- Implemented with a 12-layer Transformer
- Trained jointly with the LDM



ZoomLDM - Training

Train LDM on 256x256 patches conditioned on the summarizer's outputs



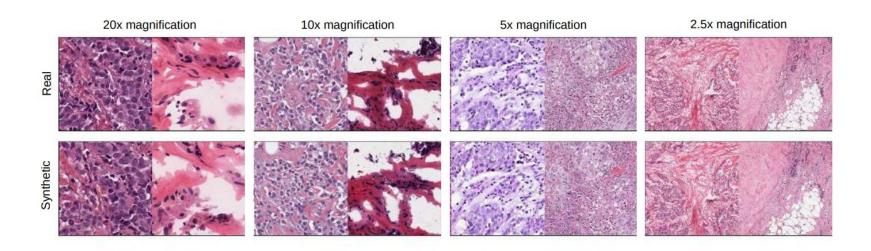
Results - Patch generation

SoTA across all magnifications, due to parameter sharing

Magnification	$20\times$	$10 \times$	$5\times$	$2.5 \times$	$1.25 \times$	$0.625 \times$	$0.3125 \times$	$0.15625 \times$
# Training patches	12 Mil	3 Mil	750k	186k	57k	20k	7k	2.5k
ZoomLDM	6.77	7.60	7.98	10.73	8.74	7.99	8.34	13.42
SoTA	6.98 [17]	7.64 [49]	9.74 [17]	20.45	39.72	58.98	66.28	106.14

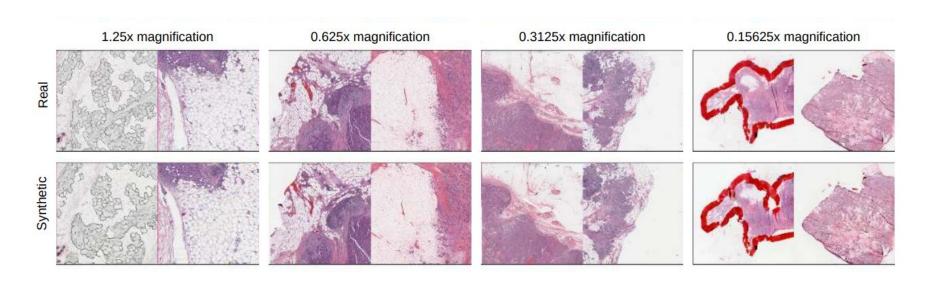
Results - Patch generation

ZoomLDM preserves semantic features of the reference patch



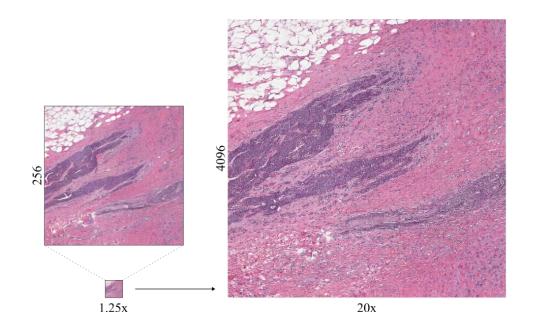
Results - Patch generation

ZoomLDM preserves semantic features of the reference patch



Joint multi-scale sampling

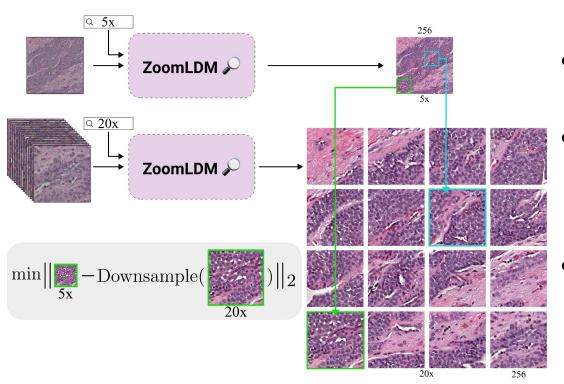
- We can generate multiple scales at the same time
 - 1.25x image guides the structure of 20x with global context.



Large image generation

Similar to a photo-mosaic?

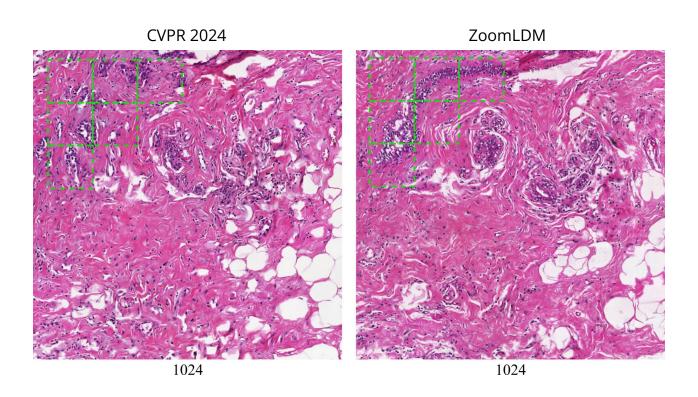
Large image generation - joint sampling



- During sampling the 5x image guides the generation of the 20x
- "Self-guidance" by minimizing the difference between the downsampled 20x patches and the 5x guide [3]
- We introduce a faster and less memory-intensive way to enforce guidance that avoids backprop

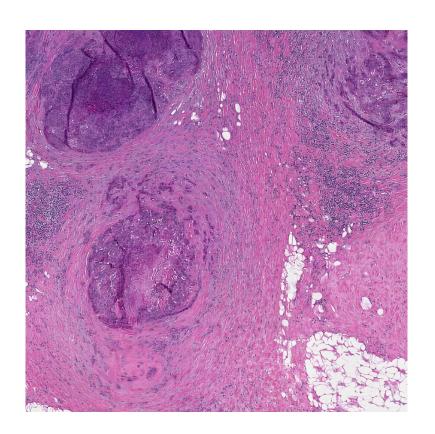
Comparison to previous work

The generated large images maintain global context without sacrificing details



Results - Large image generation

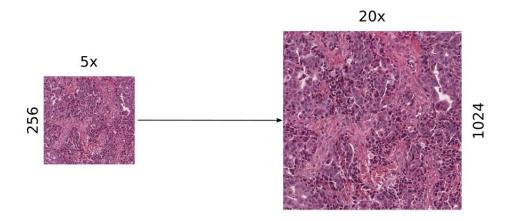
Method	1024×1024				96 × 4096 CLIP Crop		
	/ img	FID	FID	/ img	FID	FID	
Graikos et al. [17]							
∞-Brush [26]			17.87				
ZoomLDM	28 s	1.23	14.94	8 m	6.75	18.90	



Results - Satellite (NAIP)

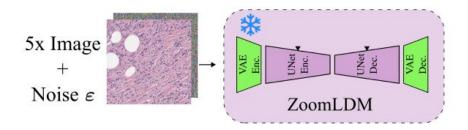
Superresolution

- 4x super-resolution $\Rightarrow 5x$ to 20x magnification
- Same joint sampling algorithm
- No access to ground-truth SSL embeddings (In 20x magnification)



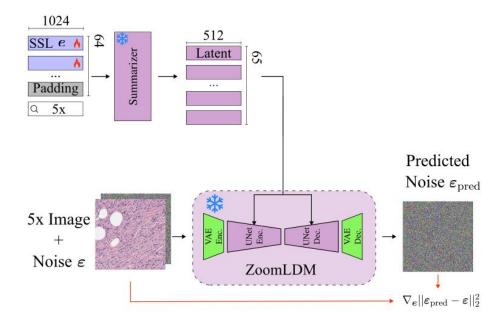
Superresolution - inversion

• We infer the 20x SSL embeddings from the 5x low-res image.



Superresolution - inversion

- We infer the 20x SSL embeddings from the 5x low-res image
 - Use the denoising loss to find the SSL embeddings that best denoise the 5x image
 - Similar to textual inversion



Results - Superresolution

Table 3. Super-resolution results on TCGA-BRCA [4] and BACH [1] using ZoomLDM and other diffusion-based baselines. Using ZoomLDM with the proposed condition inference achieves the best performance.

Method	Conditioning	TCGA BRCA					BACH				
Method		SSIM↑	PSNR ↑	LPIPS↓	CONCH↑	UNI ↑	SSIM ↑	PSNR ↑	LPIPS↓	CONCH↑	UNI↑
Bicubic	-	0.653	24.370	0.486	0.871	0.524	0.895	34.690	0.180	0.969	0.810
CompVis [39]	LR image	0.563	21.926	0.247	0.946	0.565	0.723	27.278	0.206	0.954	0.576
ControlNet [52]	LR image	0.543	21.980	0.252	0.874	0.563	0.780	27.339	0.276	0.926	0.721
	Uncond	0.591	23.217	0.260	0.936	0.680	0.739	29.822	0.235	0.965	0.741
ZoomLDM	GT emb	0.599	23.273	0.250	0.946	0.672	0.732	29.236	0.245	0.974	0.753
9	Infer emb	0.609	<u>23.407</u>	0.229	0.957	0.719	0.779	<u>30.443</u>	0.173	0.974	0.808

Multiple instance learning

ZoomLDM as feature extractor for MIL

• Can utilize features at multiple scales

Table 4. AUC for BRCA subtyping and HRD prediction. Features extracted from ZoomLDM outperform SoTA vision encoders.

Features	Mag	Subtyping	HRD
Phikon [14]	20×	93.81	76.88
UNI [8]	20×	94.09	81.79
CTransPath [47]	$5 \times$	93.11	85.37
	20×	94.49	85.25
ZoomLDM	$5 \times$	94.09	86.26
	Multi-scale $(20 \times + 5 \times)$	94.91	88.03

Conclusion

- **ZoomLDM** is the first multi-scale LDM for large image domains
 - Shared weights across scales achieve SoTA in patch generation
- Multi-scale generation and our efficient joint sampling algorithm enable:
 - Large image generation (4096 x 4096 pixels)
 - Superresolution
- Multi-scale features outperform SSL in MIL tasks