Improving Transferable Targeted Attacks with Feature Tuning Mixup

Kaisheng Liang, Xuelong Dai, Yanjie Li, Dong Wang, Bin Xiao

Presenter: Kaisheng Liang March 2025

Overview

- Background
- Motivation
- Methodology
- Experiment
- Conclusion

Background

- Adversarial Examples
 - Small perturbations that fool DNNs
- Non-targeted Attacks
 - Push input to any incorrect class
- Targeted Attacks
 - Force input into a specific target class

Benign Image True label: speedboat Prediction: speedboat

Non-targeted attack
True label: speedboat
Prediction: candy store

Targeted attack
True label: speedboat
Target label: unicycle
Prediction: unicycle

Transferable Targeted Attack

- Adversarial Transferability
 - Adversarial examples generated on one DNN can fool other DNNs
 - No access to other target models' outputs, architectures, parameters
- Optimization Objective
 - Targeted transfer-based attack

$$rg\min_{x^{
m adv}} \mathcal{L}(F(x^{
m adv}), y_t), \quad s.\, t. \quad \|x-x^{
m adv}\|_{\infty} \leq \epsilon$$

Adversarial Transferability

Targeted Attack on ResNet-50

True Label: balloon Target Label: pillow

Prediction of ResNet-50: pillow Prediction of VGG-16: pillow Prediction of Inception-v3: pillow Prediction of DenseNet-121: pillow

Prediction of ViT: pillow

Targeted Attack on ResNet-50

True Label: speedboat Target Label: unicycle

Prediction of ResNet-50: unicycle Prediction of VGG-16: unicycle Prediction of Inception-v3: unicycle Prediction of DenseNet-121: unicycle

Prediction of ViT: unicycle

Attack Scenario

- Given
 - A surrogate model F, a benign image x, a target label y_t
- Goal
 - Generate \mathbf{x}^{adv} that is misclassified by the model F as the target label y_t
 - Transferability: other models also classify x^{adv} as the target label y_t
- Constraint
 - Perturbation follows the ℓ_{∞} -norm constraint
 - No additional training dataset

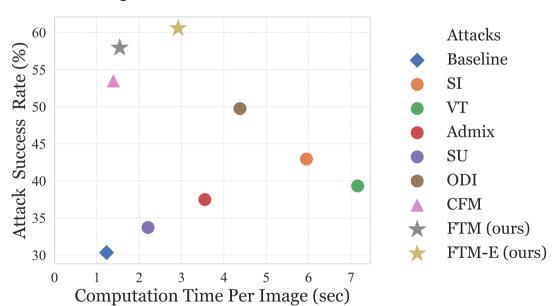
Existing Methods

- Gradient-based Attack
 - Momentum Iterative FGSM (MI-FGSM)
- Input Transformation
 - Scale Invariant (SI)
 - Admix
 - Object-based Diverse Input (ODI)
- Feature Augmentation
 - Clean Feature Mixup (CFM)

Challenges

- Limited Transferability
- Computational Cost

Average Attack Success Rates on All Models



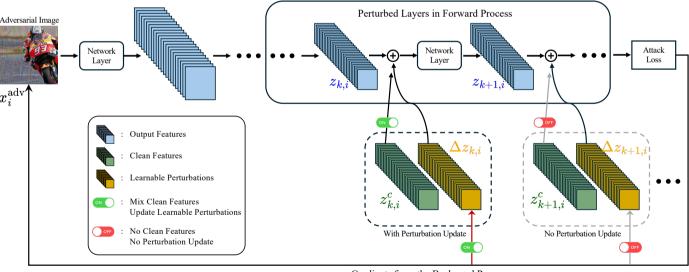
Motivation

- Feature Space Instead of Image Space
- Disrupting the Surrogate Model
 - Improves the transferability of adversarial examples
 - CFM is attack-agnostic in nature
 - Explicitly optimizing feature perturbations remains to be explored

$$\mathcal{L}ig(F(x_i^{ ext{adv}};\Delta z_i),y_tig) > \mathcal{L}ig(F(x_i^{ ext{adv}}),y_tig)$$

Methodology

- Introducing Learnable Feature Perturbation
 - Perturbation Injection
 - Perturbation Update



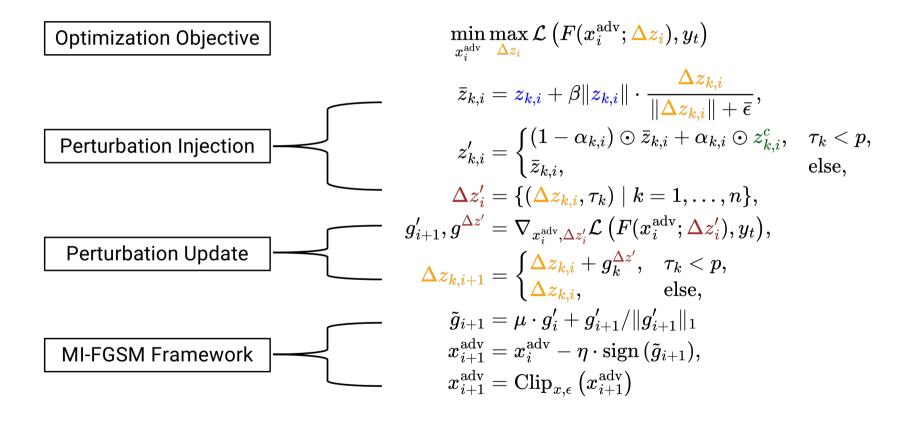
 x_i^{adv} : i-th iteration of x^{adv} $\Delta z_{k,i}$: k-th layer of Δz_i

Gradients from the Backward Process

Momentum Stochastic Update

- Momentum
 - Using perturbations in previous iterations
- Stochastic
 - Randomly select a small portion of layers for update

Feature Tuning Mixup (FTM)



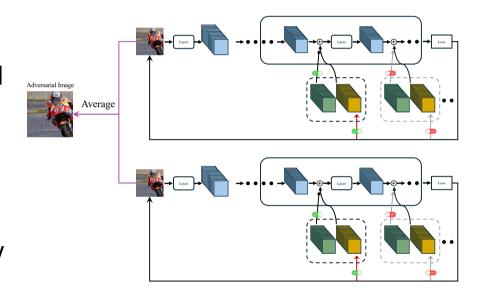
Ensemble of Surrogate Variants (FTM-E)

• FTM

Efficiently perturb the surrogate model

• FTM-E

- Multiple copies of the given surrogate model
- Independently apply FTM to each copy



Efficiency Analysis

- No time-consuming transformation
- No need for extra backpropagation
 - Maintain the one-step optimization of FGSM
- Our method works for different models
 - CNNs, ViTs, etc.

Experimental Setup

- Dataset
 - ImageNet-compatible dataset
 - 1000 images, from NeurIPS 2017
- Iteration Number
 - 300
- Logit-based Loss Function
- Baseline Framework
 - MI-TI-FGSM
- Models
 - 15 pretrained DNNs, consisting of 10 CNNs and 5 ViTs

Experimental Results

- Adversarial Transferability
 - Our method significantly improves the attack success rates

Attack	$LeViT \Rightarrow$											
	VGG-16	RN-50	Inc-v3	DN-121	IR-v2	Inc-v4	Xcep	ViT	LeViT*	ConViT	Twins	PiT
DI	1.6	2.5	4.2	2.7	1.8	2.6	2.3	0.6	100	4.2	9.3	10.3
RDI	3.0	3.5	5.4	4.1	3.6	4.6	2.3	1.1	100	7.9	13.8	22.1
RDI-Admix	6.5	8.3	9.9	8.8	5.8	7.2	5.5	3.3	100	10.7	23.3	30.9
RDI-Admix ₅	5.3	8.1	13.9	12.4	9.9	8.4	7.2	8.0	99.9	20.6	30.0	47.2
RDI-SI	3.4	6.3	10.6	10.0	6.4	5.4	5.1	4.3	100	18.1	24.1	38.4
RDI-VT	5.3	7.2	12.0	10.1	8.3	8.8	8.9	6.3	99.9	18.7	27.2	40.5
RDI-ODI	21.0	25.0	40.9	38.3	25.7	31.2	26.3	15.3	98.7	34.1	43.8	66.1
RDI-CFM	27.3	30.3	39.8	39.0	23.6	30.1	27.2	18.4	100	45.5	63.8	75.7
RDI-FTM	41.3	<u>41.9</u>	<u>56.9</u>	54.2	39.8	<u>46.5</u>	<u>42.2</u>	31.1	99.9	63.2	<u>77.5</u>	86.7
RDI-FTM-E	50.1	52.4	62.8	63.1	48.4	53.2	49.2	40.3	99.9	72.2	86.2	93.0

Effectiveness and Efficiency

- For Different Surrogates
- Low Computational Cost

Source	Attack	ViT	LeViT	ConViT	Twins	PiT	Avg.	Computation time per image (sec)
RN-50	DI	0.2	3.5	0.4	1.5	1.7	1.5	1.37
	RDI	0.7	13.2	1.7	6.1	7.0	5.7	1.23
	RDI-SI	2.9	29.4	6.3	15.5	17.9	14.4	5.95
	RDI-VT	2.9	28.1	5.2	15.0	14.0	13.0	7.16
	RDI-Admix	1.3	22.5	2.5	8.5	8.4	8.6	3.55
	RDI-SU	0.8	16.9	2.3	6.9	7.8	6.9	2.21
	ODI	5.1	37.0	10.7	20.1	29.1	20.4	4.38
	RDI-CFM	4.3	46.1	8.9	25.2	24.7	21.8	1.39
	RDI-FTM	5.9	52.9	10.8	32.4	31.5	26.7	1.54
	RDI-FTM-E	6.8	58.6	13.6	35.2	34.9	29.8	2.92
Inc-v3	DI	0.1	0.3	0.0	0.0	0.1	0.1	2.01
	RDI	0.2	1.8	0.2	0.4	0.7	0.7	1.76
	RDI-SI	0.3	4.1	0.9	0.7	3.2	1.8	8.11
	RDI-VT	0.4	5.2	0.8	1.6	1.8	2.0	10.5
	RDI-Admix	0.1	4.1	0.6	1.4	1.4	1.5	4.92
	RDI-SU	0.2	2.0	0.3	1.3	1.0	1.0	2.36
	ODI	0.8	12.4	1.7	3.5	6.7	5.0	6.42
	RDI-CFM	2.1	21.9	3.2	6.1	11.6	8.9	2.13
	RDI-FTM	2.4	25.0	4.5	10.0	15.3	11.5	2.35
	RDI-FTM-E	3.8	32.7	6.8	12.7	20.4	15.3	4.37

Evaluation on LLMs

- Surrogate Model
 - ViT
- Target Models
 - Qwen2-VL
 - Llama-3.2
 - Claude-3.5
 - GPT-40

Response	Qwen2-VL	Llama-3.2	Claude-3.5	GPT-4o	Avg
Total	100	100	100	100	100 %
Refuse to Answer	0	10	0	0	2.50 %
Uncertain	1	5	1	0	1.75 %
Attack Failed	52	42	54	73	55.25 %
Attack Succeeded	47	43	45	27	40.50 %

- o We randomly select 100 images for evaluation.
- o Each adversarial image is generated using FTM-E on ViT.
- We use the prompt "Is this image a photo of { target label }?
 Yes or No?" to obtain predictions of LLMs.

Conclusion

- Incorporating attack-specific feature perturbations can efficiently enhance transferable targeted attacks.
- FTM uses a momentum stochastic update, maintaining computational efficiency while improving attack transferability.
- FTM significantly outperforms state-of-the-art attacks across various source and target models.