

Circumventing shortcuts in audio-visual deepfake detection datasets with unsupervised learning

Ștefan Smeu¹, Dragoș-Alexandru Boldișor¹, Dan Oneață², Elisabeta Oneață¹,

¹Bitdefender, Romania bit-ml.github.io

Motivation

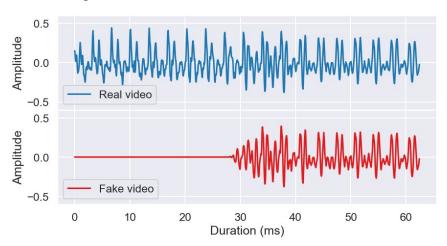
- Deepfake detection models often exploit unintended artifacts and biases in datasets.
 - audio or visual artifacts
 - audio-video desynchronisation
 - post-processing artifacts
 - others
- Such reliance on spurious features undermines model robustness and generalizability.

Findings

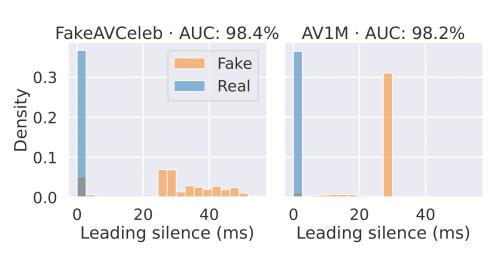
- Leading silence in fake videos is a spurious shortcut in audio-visual deepfake datasets.
- Supervised models overfit to this, failing to generalize when the silence is removed.

Found biases in audio-deepfake datasets

Leading silence:



Beginning of a real video and its fake counterpart, before alteration begins.



Leading silence distribution in FakeAVCeleb and AV-Deepfake1M

Performant baseline: leading silence classifier



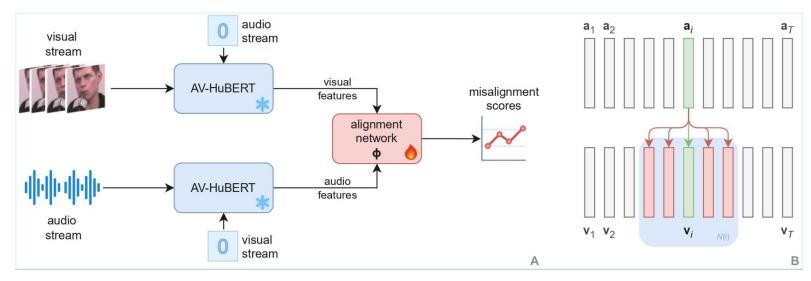
Metric: AUC		FakeAVCeleb		AV-Deepfake1M	
Method	Mod.	Trim: 🗶	Trim: ✓	Trim: 🗡	Trim: 🗸
Silence classifier	Α	98.4	54.8 ↓ 43.6	98.2	50.6 ↓ 47.6
RawNet2	Α	99.9	97.3↓2.6	99.9	88.1 ↓ 11.8
MDS (sup)	AV	90.4	73.8 ↓ 16.6	99.2	54.9 ₩ 44.3
AVAD (unsup)	AV	95.2	95.2≅ 0.0	52.9	52.9≅ 0.0

Over 98% AUC for a small enough audio magnitude threshold

Performance of most supervised methods drops when leading silence is removed!

AVH-Align

One way to **circumvent** these unintended artifacts and biases is to **train only on real videos**. We leverage pretrained self-supervised audio-visual features of AV-HuBERT.



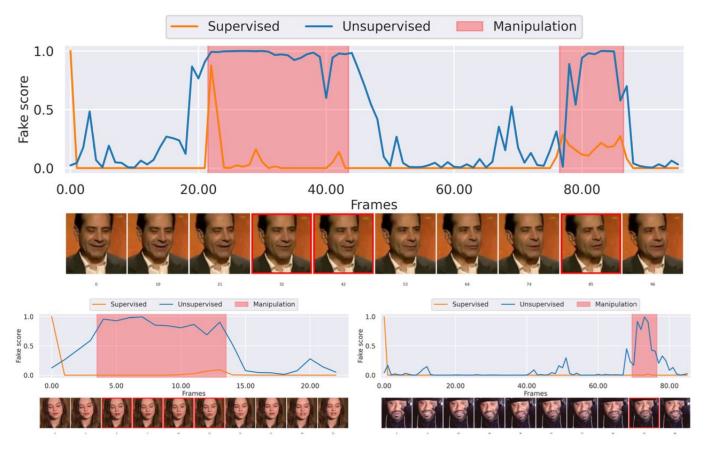
Proposed network to learn alignment between video and audio channels. Left - shows the overall architecture; Right - illustrates the contrastive learning approach.

Results

Metric: AUC			FakeAVCeleb	AV-Deepfake1M
Method	Train type	Train data	Trim: 🗡 Trim: 🗸	Trim: 🗡
AVH-Align/sup	sup.	FAVC	99.2 99.2 ≅	69.0 63.6 ↓↓
AVH-Align/sup	sup.	AV1M	77.5 70.8 ↓↓	100.0 83.1 ↓
AVAD	unsup.	LRS	84.5 84.7 ≅	54.3 54.3 ≅
SpeechForensics	unsup.	VoxCeleb2	98.8 98.8 ≅	68.8 68.2 ≅
AVH-Align	unsup.	VoxCeleb2	<u>94.6</u> <u>94.6</u> ≅	85.9 83.5 ↓

AVH-Align achieves the highest results, while maintaining robustness.

Qualitative results



Takeaways

- Audio-video datasets may inherit unwanted artifacts and biases that differ between real and fakes.
- Supervised methods latch onto these artifacts and biases to make predictions.
- Learning only from real videos provides improved and robust results.

Thank You!

