

FreBIS: Frequency-Based Stratification for Neural Implicit Surface Representations

Naoko Sawada^{1, 2}, Pedro Miraldo¹, Suhas Lohit¹, Tim K. Marks¹, Moitreya Chatterjee¹

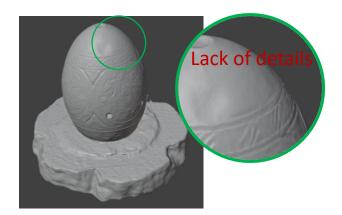
¹ Mitsubishi Electric Research Laboratories (MERL)

² Information Technology R&D Center, Mitsubishi Electric Corporation

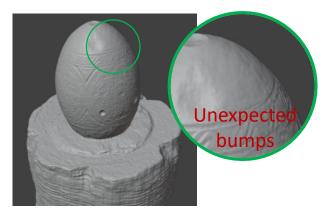
Motivation & Problem Statement

- Neural implicit surface representation enables continuous high-resolution and accurate 3D surface reconstruction.
- Existing methods use a single encoder to capture all surface frequencies.
- → There is a tradeoff between accurate shape recovery and reconstructing the fine details.

Reference image



Positional encoding level 6 [VolSDF, 2021]



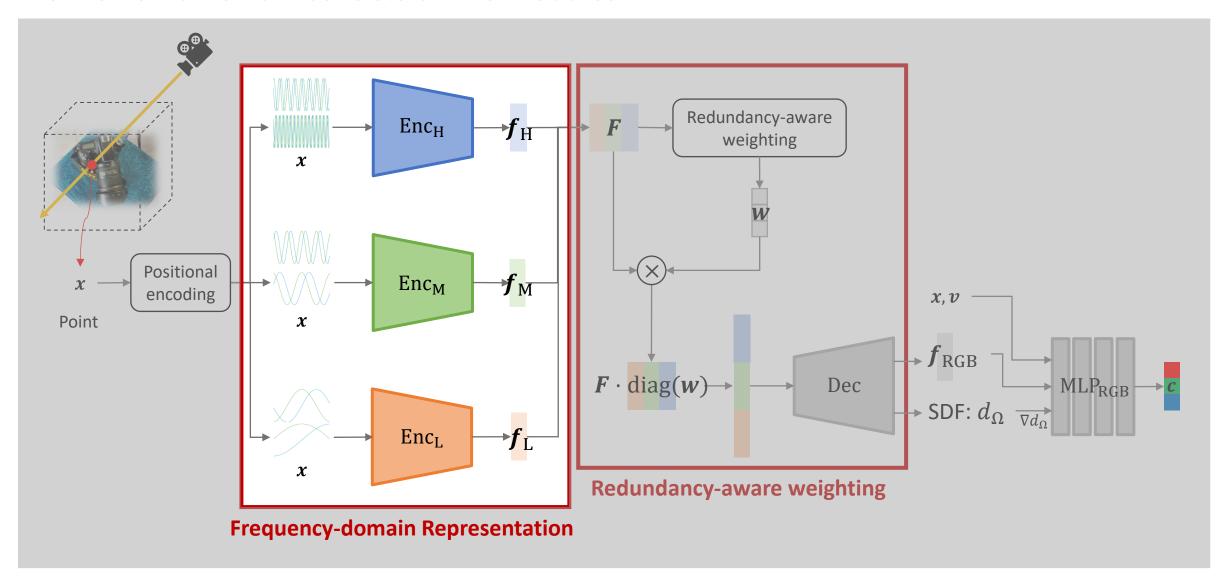
Positional encoding level 9 [VolSDF, 2021]

Goal:

Recover high-quality surfaces of a 3D scene that contains a wide variety of frequency levels.

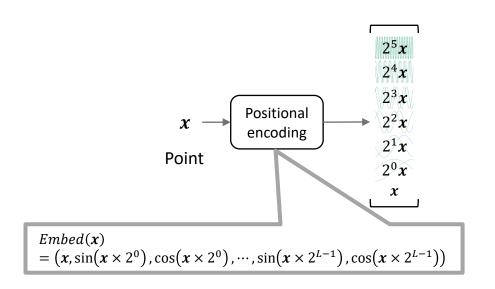
Method: FreBIS

The FreBIS framework consists of two modules:



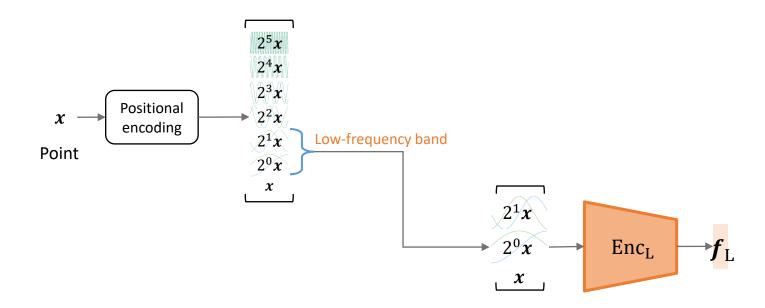
Frequency-Domain Representation

- Three encoders convert the input to features corresponding to different frequency bands (low, middle, high).
- FreBIS uses positional encoding to transform the input coordinate into frequency domains.
 - e.g., frequency level L=6



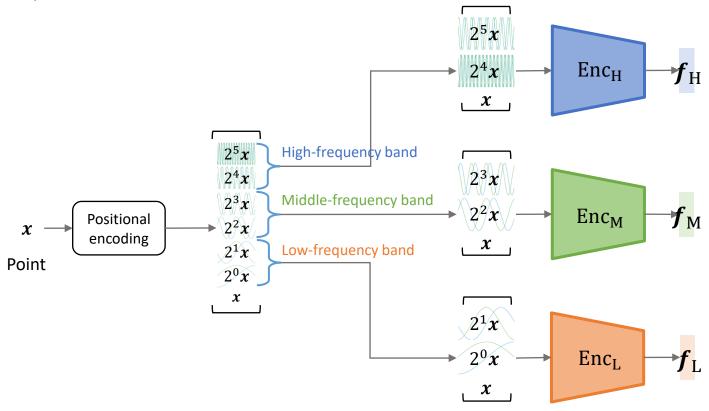
Frequency-Domain Representation

- Three encoders convert the input to features corresponding to different frequency bands (low, middle, high).
- FreBIS uses positional encoding to transform the input coordinate into frequency domains.
 - e.g., frequency level L=6



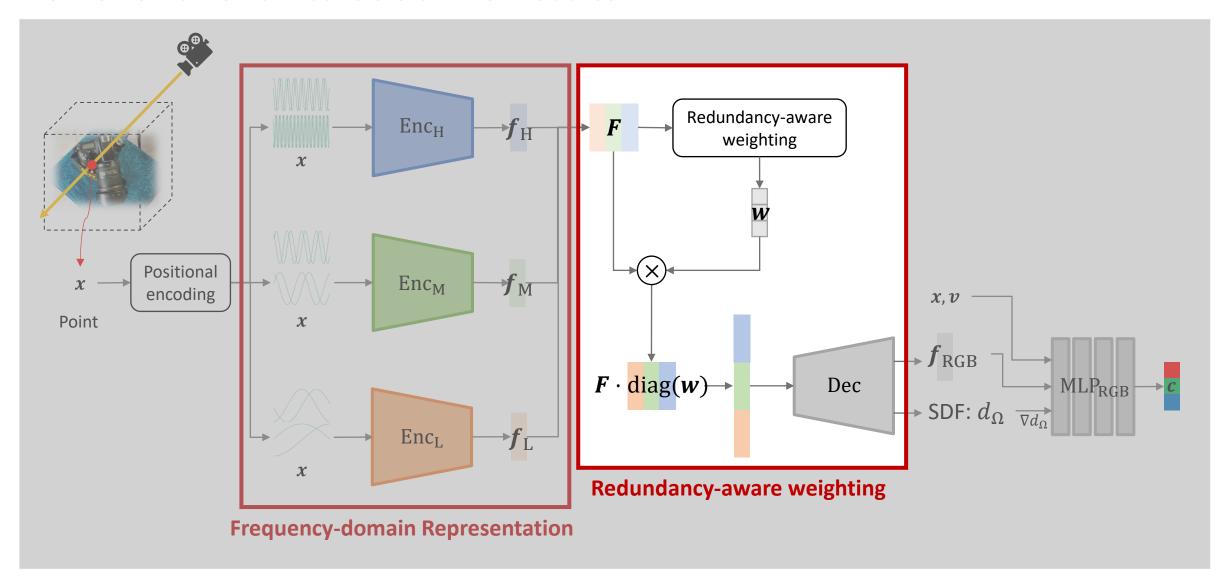
Frequency-Domain Representation

- Three encoders convert the input to features corresponding to different frequency bands (low, middle, high).
- FreBIS uses positional encoding to transform the input coordinate into frequency domains.
 - e.g., frequency level L=6



Method: FreBIS

The FreBIS framework consists of two modules:

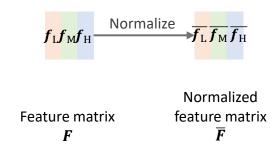


- The redundancy-aware weighting module **maximally utilizes the encoder capacity** and effectively combines the learned complementary information by encouraging **dissimilarity between the learned representations**.
 - i.e., the higher weights are on features that are dissimilar to other features,
 while the lower weights are on features that are similar to other features.

Feature matrix

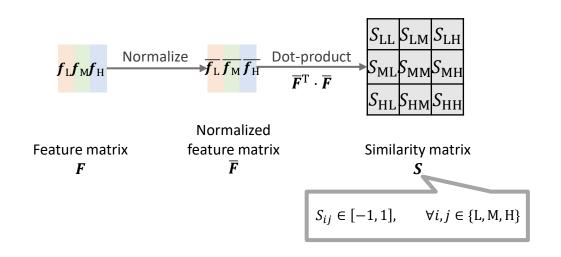
- The redundancy-aware weighting module **maximally utilizes the encoder capacity** and effectively combines the learned complementary information by encouraging **dissimilarity between the learned representations**.
 - i.e., the higher weights are on features that are dissimilar to other features,
 while the lower weights are on features that are similar to other features.

Feature normalization



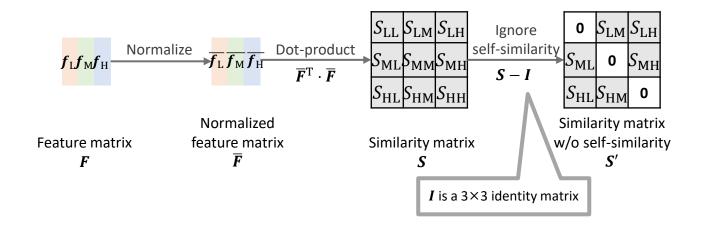
- The redundancy-aware weighting module maximally utilizes the encoder capacity and effectively combines the learned complementary information by encouraging dissimilarity between the learned representations.
 - i.e., the higher weights are on features that are dissimilar to other features,
 while the lower weights are on features that are similar to other features.

Similarity between features



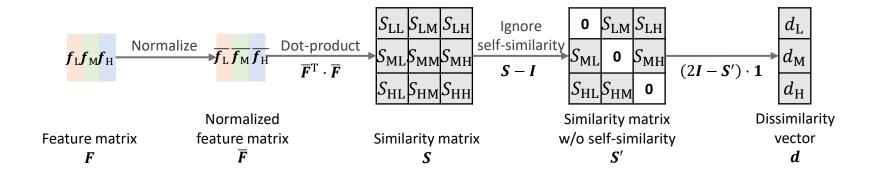
- The redundancy-aware weighting module **maximally utilizes the encoder capacity** and effectively combines the learned complementary information by encouraging **dissimilarity between the learned representations**.
 - i.e., the higher weights are on features that are dissimilar to other features,
 while the lower weights are on features that are similar to other features.

Off-diagonal similarity



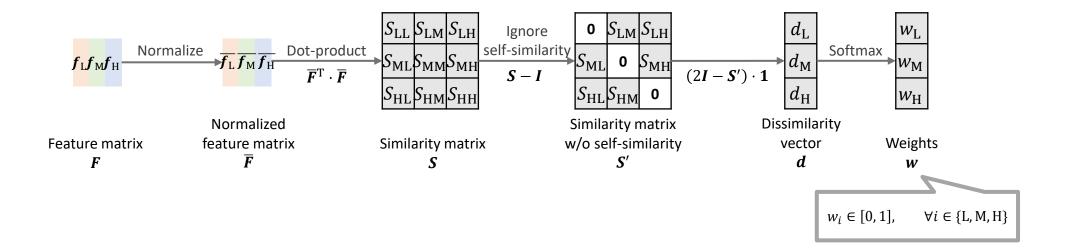
- The redundancy-aware weighting module **maximally utilizes the encoder capacity** and effectively combines the learned complementary information by encouraging **dissimilarity between the learned representations**.
 - i.e., the higher weights are on features that are dissimilar to other features,
 while the lower weights are on features that are similar to other features.

Dissimilarity between features



- The redundancy-aware weighting module **maximally utilizes the encoder capacity** and effectively combines the learned complementary information by encouraging **dissimilarity between the learned representations**.
 - i.e., the higher weights are on features that are dissimilar to other features,
 while the lower weights are on features that are similar to other features.

Rescaled dissimilarity



Overall FreBIS Framework



Experimental Setup

Dataset

BlendedMVS : Object-centric real-world scenes with complex backgrounds

■ Number of Scenes : 9 scenes

■ Number of views : 31~144 views

■ **Resolution** : 768 × 576

Baselines

VolSDF [Yariv et al., 2021] : 0.5M parameters

Scaled-up VolSDF : 1.4M parameters (roughly the same as Ours)

*Scaled-up VolSDF: An adaptation of VolSDF, where the number of parameters is increased to be roughly the same as Ours

Quantitative Results: BlendedMVS

	Method (no. of parameters)	Doll	Egg	Head	Angel	Bull	Robot	Dog	Bread	Camera	Mean
PSNR(†)	VolSDF [52] (0.5M)	25.43	27.23	26.94	30.28	26.18	26.39	28.44	31.18	22.96	27.23
	Scaled-up VolSDF (1.4M)	26.07	27.15	26.62	30.37	26.08	25.07	28.32	29.44	23.02	26.90
	Ours (1.4M)	26.22	27.48	27.29	30.52	26.33	26.69	28.56	30.22	23.08	27.38
SSIM(↑)	VolSDF [52] (0.5M)	0.911	0.943	0.959	0.989	0.970	0.957	0.950	0.988	0.928	0.955
	Scaled-up VolSDF (1.4M)	0.925	0.943	0.956	0.990	0.970	0.946	0.949	0.980	0.929	0.954
	Ours (1.4M)	0.928	0.946	0.961	0.990	0.971	0.962	0.952	0.983	0.930	0.958
LPIPS(\dagger)	VolSDF [52] (0.5M)	0.041	0.032	0.017	0.007	0.021	0.032	0.027	0.006	0.045	0.025
	Scaled-up VolSDF (1.4M)	0.035	0.032	0.018	0.006	0.021	0.043	0.028	0.011	0.045	0.027
	Ours (1.4M)	0.035	0.030	0.015	0.006	0.020	0.030	0.026	0.009	0.044	0.024

The proposed method improves the rendering quality in terms of PSNR, SSIM, and LPIPS.

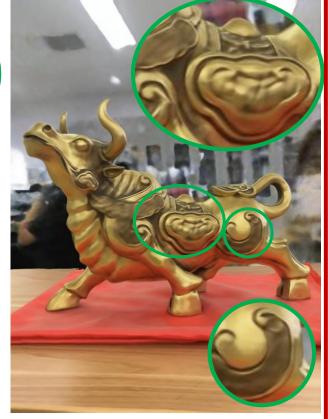
Qualitative Results: BlendedMVS (Doll)

Ground truth

Scaled-up VolSDF

VolSDF

Qualitative Results: BlendedMVS (Bull)

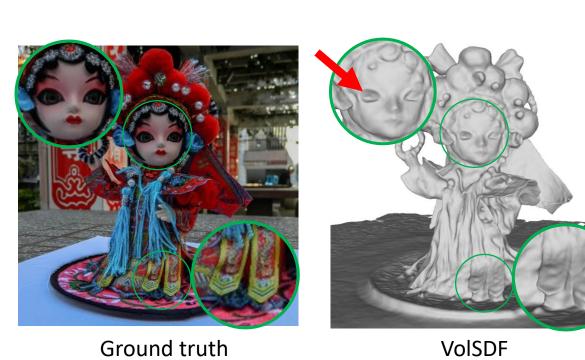


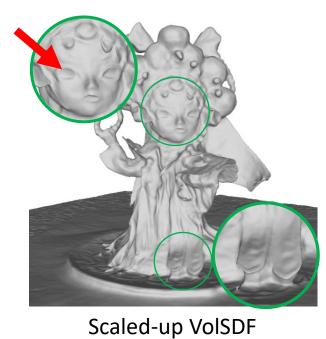
Ground truth

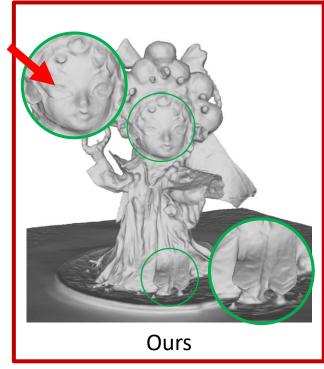
VolSDF

Scaled-up VolSDF

Qualitative Results: BlendedMVS (Doll)

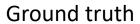


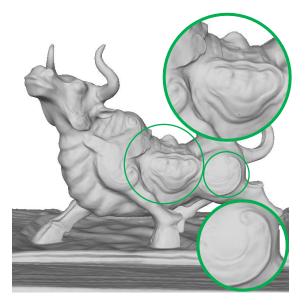




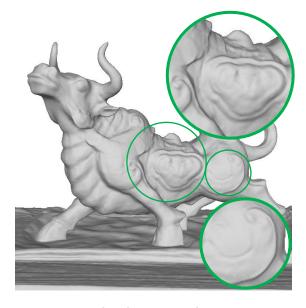
© MERL

Qualitative Results: BlendedMVS (Bull)

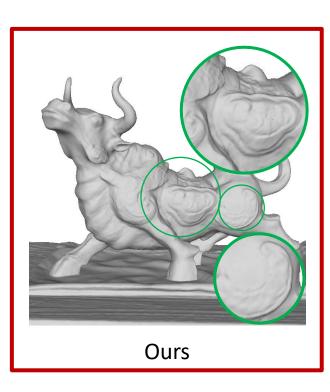




VolSDF



Scaled-up VolSDF



Conclusion

- We propose FreBIS, which stratifies a scene into multiple frequency levels according to the surface frequencies and leverages a novel redundancy-aware weighting module, to effectively capture complementary information.
- FreBIS improved the qualities of the reconstructed meshes, as well as rendered images.
- For future work, we plan to evaluate FreBIS on other datasets and backbones.

Thank you for your attention!

For more details, please check out our paper and poster.