

Beyond Neurofibrillary Tangles: Explainable AI for Microscopic Tauopathy Classification in Immunofluorescence Imaging

Jesus Dassaef López-Barrios, Miguel Angel Ontiveros-Torres, and Jose Antonio Cantoral-Ceballos

MSc CS & DS intern @ MSFT

Why Tau Matters

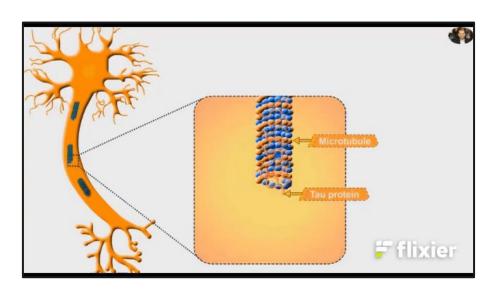
Growing Dementia Burden;
Microscopy Remains Manual & Late

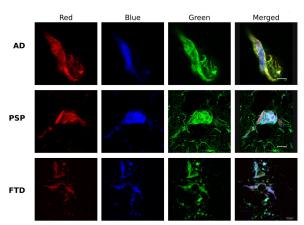
Why should we care about dementia?

million people live with dementia

Caused by

diseases and injuries that affect the brain, such as Alzheimer's disease and stroke

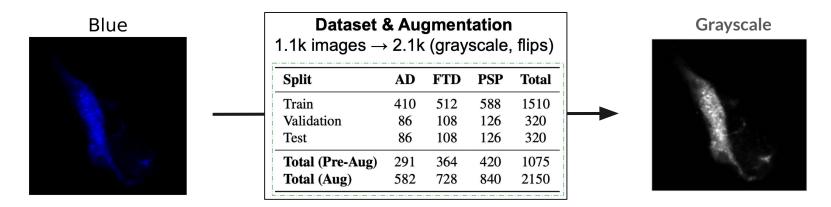

NFTs as a Diagnostic Filter


Neurofibrillary Tangles – Powerful,

but **Not** the Whole Picture?

Tau misfolding → NFT formation

Actual dataset



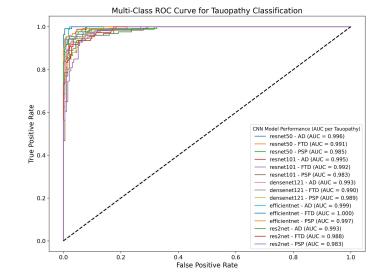
Mexican post-mortem hippocampal samples: triple-signal images (Alzheimer's Disease (AD), Progressive Supranuclear Palsy (PSP), and Frontotemporal Dementia (FTD)) with AT8-pTau (G), Thiazine-Red fibrils (R), pS396-Tau (B) + merged

Data: Rare & Carefully Controlled

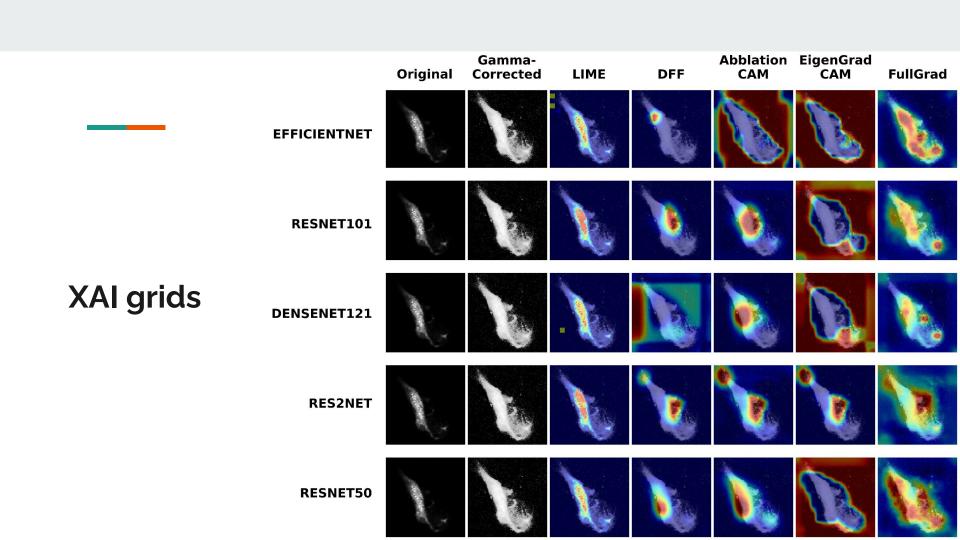
2 150 Images · +10-Year Curation · Strict Bias Controls

- **Grayscale** conversion to suppress colour cues
- $512 \times 512 \text{ px}$, $100 \times \text{ oil objective} \rightarrow \text{TIFF to NPY}$
- Augmentation confined to train split
- Dataset National Dementia BioBank, Mexico; shaped by cultural donation barriers

Model Setup & Baseline Metrics


Five CNNs - EfficientNet-Bo Leads, All >90 % F1

Model	Fine-Tuned Layers
ResNet50, ResNet101, Res2Net	Layers 1, 2, and 4
DenseNet121	Last 8 layers
EfficientNet-B0	Last 8 layers




Hyperparameter	Value
Learning Rate	0.001
Batch Size	16
Optimizer	AdamW (weight decay $5e^{-4}$)
Loss Function	CrossEntropyLoss ($T_{max} = 10$,
	$\eta_{min} = 10^{-6})$
Gradient Clipping	Max norm = 1.0
Scheduler	Cosine Annealing LR
Epochs	30

Model	Accuracy	Precision	Recall	F1-Score
EfficientNet-B0	96.56	96.39	96.70	96.52
ResNet101	92.50	92.51	92.56	92.53
DenseNet121	92.19	92.15	92.27	92.18
Res2Net	90.94	91.00	90.97	90.98
ResNet50	90.94	91.08	90.90	90.78

Explainable AI (XAI)

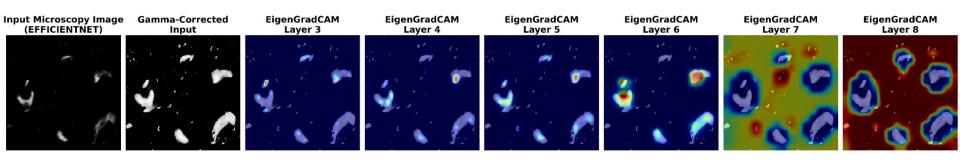
XAI Results

Model	EigenGradCAM	DFF	LIME	FullGrad	AblationCAM
ResNet50	Background	Tangle	Tangle	Tangle	Tangle
Res2Net	Tangle	Tangle	Tangle	Tangle	Tangle
DenseNet121	Background	Background	Tangle	Tangle	Tangle
ResNet101	Background	Tangle	Tangle	Tangle	Tangle
EfficientNet-B0	Background	Tangle	Tangle	Tangle	Background

Background (inverse effect) highlighted by EigenGradCAM, AblationCAM & DFF in high-F1 models; LIME/FullGrad stay NFT-centric

'Inverse Saliency': **Background Highlights**Increase with Performance

Inverse-effect frequency bar


Model	Inverse Effect Frequency (%)
EfficientNet-B0	94.69
DenseNet121	74.69
ResNet101	72.81
ResNet50	68.75
Res2Net	38.75

Perturbation Test

Occluding Background Alters
Predictions – But Interpretation ≠
Causation

Layer-wise saliency

- EigenGradCAM across EfficientNet layers
- Granular to background
- Learnt not spontaneous

Ablation metrics

27%

73%

61%

39%

31%

69%

73%

27%

39%

61%

69%

31%

ResNet101

Res2Net

ResNet50

Model	% Inverse Effect (EigenGradCAM)	% No Inverse Effect (EigenGradCAM)	Important Feature (if removed)	Inverse	avg_flip_rate (% class change)	avg_delta_p (decrease in true class score)	More Important
DenseNet121	75% 25%	25% 75%	Background Tangle	No Yes	81% 68%	0.72 0.58	Background
EfficientNet	95% 5%	5% 95%	Background Tangle	No Yes	65% 65%	0.61 0.63	Both

No

Yes

No

Yes

No

Yes

61%

61%

66%

66%

53%

70%

0.53

0.53

0.57

0.57

0.47

0.57

Both

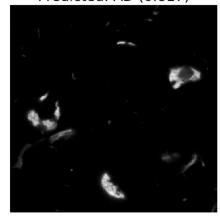
Both

Tangle

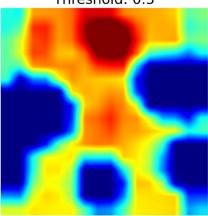
Background

Tangle

Tangle


Background

Background


Tangle

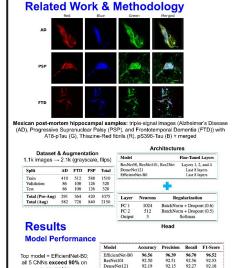
Example triple-panel


Original Image True Label: AD Predicted: AD (0.817)

EigenGradCAM Heatmap Threshold: 0.5

Ablated Region New Prediction: FTD (1.000)

Conclusions & Next Steps


Beyond NFTs → **Non-Canonical Tauopathy Signals**

- Solid but limited accuracy EfficientNet-B0 tops; all 5 CNNs > 90 % on every metric.
- Saliency High-F1 models spotlight non-canonical background rather than tangles.
- Ablation Removing those zones flips labels (e.g., AD → FTD) / drops confidence ≈ NFT removal.
- Interpretation May hint at neuropil threads or glial inclusions or spurious bias; expert confirmation essential.
- Next steps Multi-site cohorts + GFAP / IBA1 stains, multimodal PET/MRI, stronger bias tests.
- Clinical role Al proposes hypotheses; neuropathologists decide.

Background features: potential biomarkers or artifacts? Validation will tell.

Future work: Initial base *encoder* for full *captioning* report generation explainable pipeline.

Thanks!

Res2Net

ResNet50

90.94

90.97

90.90

Tecnológico de Monterrey

every metric

XAI Results

Model	EigenGradCAM	DFF	LIME	FullGrad	AblationCAM
ResNet50	Background	Tangle	Tangle	Tangle	Tangle
Res2Net	Tangle	Tangle	Tangle	Tangle	Tangle
DenseNet121	Background	Background	Tangle	Tangle	Tangle
ResNet101	Background	Tangle	Tangle	Tangle	Tangle
EfficientNet-B0	Background	Tangle	Tangle	Tangle	Background

Beyond Neurofibrillary Tangles: Explainable AI for Microscopic Tauopathy

Classification in Immunofluorescence Imaging

Background (inverse effect) highlighted by EigenGradCAM, AblationCAM & DFF in high-F1 models; LIME/FullGrad stay NFT-centric

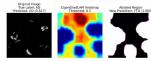
Abblation EigenGrad

	Original	Corrected	LIME	DFF	CAM	CAM	FullGrad
EFFICIENTNET	1	1	V	1		B	V
RESNET101	1	1	1	V	V	D.	W.
DENSENET121	1	1	1	N			V.
RES2NET	1	1	1	V	V.	· Control	
RESNET50	1	1	1	1	1	B	1

EigenGradCAM Effects Across Models and Lavers

Model	Inverse Effect Frequency (%)				
EfficientNet-B0	94.69				
DenseNet121	74.69				
ResNet101	72.81				
ResNet50	68.75				
Res2Net	38.75				

Inverse saliency frequency rises with performance



Layer progression. EfficientNet example: early layers focus on tangles. deep layers shift to diffuse background

Ablation Study

Model	% Inverse Effect (EigenGradCAM)	% No Inverse Effect (EigenGradCAM)	Important Feature (if removed)	Inverse	avg.flip.rate (% class change)	avg.delta.p (decrease in true class score)	More Important
DenseNet121	75%	25%	Background	No	81%	0.72	Background
	25%	75%	Tangle	Yes	68%	0.58	
EfficientNet	95%	5%	Background	No	65%	0.61	Both
	5%	95%	Tangle	Yes	65%	0.63	
ResNet101	73%	27%	Background	No	61%	0.53	Both
	27%	73%	Tangle	Yes	61%	0.53	
Res2Net	39%	61%	Tonete	No	66%	9.57	Both
	61%	39%	Background	Yes	66%	0.57	
ResNet50	69%	31%	Background	No	53%	0.47	Tangle
	31%	69%	Tonale	Yes	70%	9.57	

Ablation takeaway: DenseNet121 is background-driven; EfficientNet-B0, ResNet101 & Res2Net rely on both regions; ResNet50 remains tangle-centric

Ablation exemplar. Removing EigenGradCAM-derived background flips prediction AD → FTD, underscoring non-tangle cues

Biological Insights & Hypotheses

- · Saliency suggests CNNs may detect pathology beyond NFTs, such as neuropil threads or glial inclusions.
- · Background attribution may reflect relevant features or artifacts; further
 - · Supports using additional markers and datasets to verify non-canonical Tau patterns.