Weakly Supervised Posture Mining for Fine-Grained Classification

Zhenchao Tang · Hualin Yang · Calvin Yu-Chian Chen

West Building Exhibit Halls ABC 299
[ Abstract ] [ Project Page ]
[ Paper PDF [ Slides [ Poster
Thu 22 Jun 4:30 p.m. PDT — 6 p.m. PDT


Because the subtle differences between the different sub-categories of common visual categories such as bird species, fine-grained classification has been seen as a challenging task for many years. Most previous works focus towards the features in the single discriminative region isolatedly, while neglect the connection between the different discriminative regions in the whole image. However, the relationship between different discriminative regions contains rich posture information and by adding the posture information, model can learn the behavior of the object which attribute to improve the classification performance. In this paper, we propose a novel fine-grained framework named PMRC (posture mining and reverse cross-entropy), which is able to combine with different backbones to good effect. In PMRC, we use the Deep Navigator to generate the discriminative regions from the images, and then use them to construct the graph. We aggregate the graph by message passing and get the classification results. Specifically, in order to force PMRC to learn how to mine the posture information, we design a novel training paradigm, which makes the Deep Navigator and message passing communicate and train together. In addition, we propose the reverse cross-entropy (RCE) and demomenstate that compared to the cross-entropy (CE), RCE can not only promote the accurracy of our model but also generalize to promote the accuracy of other kinds of fine-grained classification models. Experimental results on benchmark datasets confirm that PMRC can achieve state-of-the-art.

Chat is not available.