Skip to yearly menu bar Skip to main content


Poster

DiffRF: Rendering-Guided 3D Radiance Field Diffusion

Norman Müller · Yawar Siddiqui · Lorenzo Porzi · Samuel Rota Bulò · Peter Kontschieder · Matthias Nießner

West Building Exhibit Halls ABC 019
award Highlight
[ ] [ Project Page ]

Abstract:

We introduce DiffRF, a novel approach for 3D radiance field synthesis based on denoising diffusion probabilistic models. While existing diffusion-based methods operate on images, latent codes, or point cloud data, we are the first to directly generate volumetric radiance fields. To this end, we propose a 3D denoising model which directly operates on an explicit voxel grid representation. However, as radiance fields generated from a set of posed images can be ambiguous and contain artifacts, obtaining ground truth radiance field samples is non-trivial. We address this challenge by pairing the denoising formulation with a rendering loss, enabling our model to learn a deviated prior that favours good image quality instead of trying to replicate fitting errors like floating artifacts. In contrast to 2D-diffusion models, our model learns multi-view consistent priors, enabling free-view synthesis and accurate shape generation. Compared to 3D GANs, our diffusion-based approach naturally enables conditional generation like masked completion or single-view 3D synthesis at inference time.

Chat is not available.