Skip to yearly menu bar Skip to main content


GAPartNet: Cross-Category Domain-Generalizable Object Perception and Manipulation via Generalizable and Actionable Parts

Haoran Geng · Helin Xu · Chengyang Zhao · Chao Xu · Li Yi · Siyuan Huang · He Wang

West Building Exhibit Halls ABC 282
award Highlight
[ ] [ Project Page ]
[ Paper PDF [ Slides [ Poster


For years, researchers have been devoted to generalizable object perception and manipulation, where cross-category generalizability is highly desired yet underexplored. In this work, we propose to learn such cross-category skills via Generalizable and Actionable Parts (GAParts). By identifying and defining 9 GAPart classes (lids, handles, etc.) in 27 object categories, we construct a large-scale part-centric interactive dataset, GAPartNet, where we provide rich, part-level annotations (semantics, poses) for 8,489 part instances on 1,166 objects. Based on GAPartNet, we investigate three cross-category tasks: part segmentation, part pose estimation, and part-based object manipulation. Given the significant domain gaps between seen and unseen object categories, we propose a robust 3D segmentation method from the perspective of domain generalization by integrating adversarial learning techniques. Our method outperforms all existing methods by a large margin, no matter on seen or unseen categories. Furthermore, with part segmentation and pose estimation results, we leverage the GAPart pose definition to design part-based manipulation heuristics that can generalize well to unseen object categories in both the simulator and the real world.

Chat is not available.