Skip to yearly menu bar Skip to main content


Probing Sentiment-Oriented Pre-Training Inspired by Human Sentiment Perception Mechanism

Tinglei Feng · Jiaxuan Liu · Jufeng Yang

West Building Exhibit Halls ABC 271


Pre-training of deep convolutional neural networks (DCNNs) plays a crucial role in the field of visual sentiment analysis (VSA). Most proposed methods employ the off-the-shelf backbones pre-trained on large-scale object classification datasets (i.e., ImageNet). While it boosts performance for a big margin against initializing model states from random, we argue that DCNNs simply pre-trained on ImageNet may excessively focus on recognizing objects, but failed to provide high-level concepts in terms of sentiment. To address this long-term overlooked problem, we propose a sentiment-oriented pre-training method that is built upon human visual sentiment perception (VSP) mechanism. Specifically, we factorize the process of VSP into three steps, namely stimuli taking, holistic organizing, and high-level perceiving. From imitating each VSP step, a total of three models are separately pre-trained via our devised sentiment-aware tasks that contribute to excavating sentiment-discriminated representations. Moreover, along with our elaborated multi-model amalgamation strategy, the prior knowledge learned from each perception step can be effectively transferred into a single target model, yielding substantial performance gains. Finally, we verify the superiorities of our proposed method over extensive experiments, covering mainstream VSA tasks from single-label learning (SLL), multi-label learning (MLL), to label distribution learning (LDL). Experiment results demonstrate that our proposed method leads to unanimous improvements in these downstream tasks. Our code is released on

Chat is not available.