Masked Image Modeling With Local Multi-Scale Reconstruction

Haoqing Wang · Yehui Tang · Yunhe Wang · Jianyuan Guo · Zhi-Hong Deng · Kai Han

West Building Exhibit Halls ABC 203
award Highlight
[ Abstract ] [ Project Page ]
[ Paper PDF [ Slides [ Poster
Tue 20 Jun 10:30 a.m. PDT — noon PDT


Masked Image Modeling (MIM) achieves outstanding success in self-supervised representation learning. Unfortunately, MIM models typically have huge computational burden and slow learning process, which is an inevitable obstacle for their industrial applications. Although the lower layers play the key role in MIM, existing MIM models conduct reconstruction task only at the top layer of encoder. The lower layers are not explicitly guided and the interaction among their patches is only used for calculating new activations. Considering the reconstruction task requires non-trivial inter-patch interactions to reason target signals, we apply it to multiple local layers including lower and upper layers. Further, since the multiple layers expect to learn the information of different scales, we design local multi-scale reconstruction, where the lower and upper layers reconstruct fine-scale and coarse-scale supervision signals respectively. This design not only accelerates the representation learning process by explicitly guiding multiple layers, but also facilitates multi-scale semantical understanding to the input. Extensive experiments show that with significantly less pre-training burden, our model achieves comparable or better performance on classification, detection and segmentation tasks than existing MIM models.

Chat is not available.