Skip to yearly menu bar Skip to main content


Poster

Maintaining Consistent Inter-Class Topology in Continual Test-Time Adaptation

Chenggong Ni · Fan Lyu · Jiayao Tan · Fuyuan Hu · Rui Yao · Tao Zhou

[ ] [ Paper PDF ]
[ Poster
Sat 14 Jun 8:30 a.m. PDT — 10:30 a.m. PDT

Abstract:

This paper introduces Topological Consistency Adaptation (TCA), a novel approach to Continual Test-time Adaptation (CTTA) that addresses the challenges of domain shifts and error accumulation in testing scenarios. TCA ensures the stability of inter-class relationships by enforcing a class topological consistency constraint, which minimizes the distortion of class centroids and preserves the topological structure during continuous adaptation. Additionally, we propose an intra-class compactness loss to maintain compactness within classes, indirectly supporting inter-class stability. To further enhance model adaptation, we introduce a batch imbalance topology weighting mechanism that accounts for class distribution imbalances within each batch, optimizing centroid distances and stabilizing the inter-class topology. Experiments show that our method demonstrates improvements in handling continuous domain shifts, ensuring stable feature distributions and boosting predictive performance.

Chat is not available.