Abstract:
Vision-Language models (VLMs) have excelled in the image-domain--- especially in zero-shot settings--- thanks to the availability of vast pretraining data (i.e., paired image-text samples). However for videos, such paired data is not as abundant. Therefore, video-VLMs are usually designed by adapting pretrained image-VLMs to the video-domain, instead of training from scratch. All such recipes rely on augmenting visual embeddings with temporal information (i.e., image video), often keeping text embeddings unchanged or even being discarded. In this paper, we argue the contrary, that better video-VLMs can be designed by focusing more on augmenting text, rather than visual information. More specifically, we introduce Video-conditioned Text Representations (VicTR): a form of text embeddings optimized w.r.t. visual embeddings, creating a more-flexible contrastive latent space. Our model can further make use of freely-available semantic information, in the form of visually-grounded auxiliary text (e.g. object or scene information). We evaluate our model on few-shot, zero-shot (HMDB-51, UCF-101), short-form (Kinetics-400) and long-form (Charades) activity recognition benchmarks, showing strong performance among video-VLMs.
Chat is not available.